$$\frac{\rho \vdash x := e \Rightarrow \rho[x \mapsto \llbracket e \rrbracket \rho]}{\rho \vdash x := e \Rightarrow \rho[x \mapsto \llbracket e \rrbracket \rho]} \ (:=) \qquad \frac{\rho \vdash c_1 \Rightarrow \rho' \quad \rho' \vdash c_2 \Rightarrow \rho''}{\rho \vdash c_1; c_2 \Rightarrow \rho''} \ (\text{Seq})$$

$$\frac{\rho \vdash c_1 \Rightarrow \rho'}{\rho \vdash \text{if e then c_1 else $c_2 \Rightarrow \rho'$}} \ (\text{if}_1) \qquad \frac{\rho \vdash c_2 \Rightarrow \rho''}{\rho \vdash \text{if e then c_1 else $c_2 \Rightarrow \rho''$}} \ (\text{if}_2)$$

$$\text{si } \llbracket e \rrbracket \rho \neq 0 \qquad \qquad \text{si } \llbracket e \rrbracket \rho = 0$$

$$\frac{\rho \vdash c \Rightarrow \rho' \quad \rho' \vdash \text{while e do $c \Rightarrow \rho''$}}{\rho \vdash \text{while e do $c \Rightarrow \rho''$}} \ (\text{while}) \qquad \frac{\rho \vdash \text{while e do $c \Rightarrow \rho''$}}{\rho \vdash \text{while e do $c \Rightarrow \rho''$}} \ (\text{while}_{\text{fin}})$$

$$\text{si } \llbracket e \rrbracket \rho \neq 0 \qquad \qquad \text{si } \llbracket e \rrbracket \rho = 0$$

FIGURE 1 – La sémantique opérationnelle à grands pas de IMP.

$$(x:=e\cdot C,\rho)\to (C,\rho[x\mapsto \llbracket e\rrbracket\rho])$$

$$(\mathtt{skip}\cdot C,\rho)\to (C,\rho)$$

$$(c_1;c_2\cdot C,\rho)\to (c_1\cdot c_2\cdot C,\rho)$$

$$(\text{if e then c_1 else $c_2\cdot C,\rho)\to (c_1\cdot C,\rho)$}\quad \text{si $\llbracket e\rrbracket\rho\neq 0$}$$

$$(\text{if e then c_1 else $c_2\cdot C,\rho)\to (c_2\cdot C,\rho)$}\quad \text{si $\llbracket e\rrbracket\rho=0$}$$

$$(\text{while e do $c\cdot C,\rho)\to (c\cdot \text{while e do $c\cdot C,\rho)$}\quad \text{si $\llbracket e\rrbracket\rho=0$}$$

$$(\text{while e do $c\cdot C,\rho)\to (C,\rho)$}\quad \text{si $\llbracket e\rrbracket\rho=0$}$$

FIGURE 2 – La sémantique opérationnelle à petits pas de IMP.

Théorèmes petit pas

Déterminisme La réduction est déterministe.

Progrès Les seules configurations ne possédant pas de successeur sont de la forme (ε, ρ) .

Théorèmes grand pas

Déterminisme L'arbre de dérivation d'un jugement est unique.

Correction S'il existe une dérivation $\rho \vdash c \Rightarrow \rho_{\infty}$ alors il existe une dérivation $(c \cdot \varepsilon, \rho) \to^* (\varepsilon, \rho_{\infty})$.

Adéquation S'il existe une dérivation $(c \cdot \varepsilon, \rho) \to^* (\varepsilon, \rho_{\infty})$ alors il existe une dérivation $\rho \vdash c \Rightarrow \rho_{\infty}$.

Exercice 1:

Soit c un programme et ρ un environnement. Montrer l'équivalence entre ces deux propositions :

- 1. Il existe une dérivation infinie de $(c \cdot \varepsilon, \rho)$;
- 2. Il n'existe pas de ρ_{∞} tel que $\rho \vdash c \Rightarrow \rho_{\infty}$ est dérivable.

$$\begin{split} \frac{1}{(x,\rho) \xrightarrow{pp} (\hat{\rho(x)},\rho)} &(\text{Var}) & \frac{(e_1,\rho) \xrightarrow{pp} (e_1',\rho)}{(e_1 \dotplus e_2,\rho) \xrightarrow{pp} (e_1' \dotplus e_2,\rho)} &(+_\ell) \\ \frac{(e_2,\rho) \xrightarrow{pp} (e_2',\rho)}{(\dot{n} \dotplus e_2,\rho) \xrightarrow{pp} (\dot{n} \dotplus e_2',\rho)} &(+_r) & \overline{(\dot{n} \dotplus \dot{m},\rho) \xrightarrow{pp} (\hat{n} \dotplus \dot{m},\rho)} &(+_{\text{fin}}) \\ \frac{(e,\rho) \xrightarrow{pp} (e',\rho)}{(\dot{-}e,\rho) \xrightarrow{pp} (\dot{-}e',\rho)} &(-) & \overline{(\dot{-}\dot{n},\rho) \xrightarrow{pp} (\dot{-}\dot{n},\rho)} &(-_{\text{fin}}) \end{split}$$

FIGURE 3 – Sémantique opérationnelle à petits pas des expressions arithmétiques.

Exercice 2:

La sémantique opérationnelle à petit pas des expressions arithmétiques est en Figure 3.

1. Donner une preuve de

$$((x \dotplus (\dot{-}y)) \dotplus \dot{2}, \rho[x \mapsto 3, y \mapsto 2]) \rightarrow_{pp}^* (\dot{3}, \rho[x \mapsto 3, y \mapsto 2])$$

- 2. Énoncer puis prouver un théorème de progrès.
- 3. Énoncer puis prouver un théorème de déterminisme.
- 4. Montrer la correction de la sémantique dénotationnelle.
- 5. Montrer l'adéquation de la sémantique dénotationnelle.

Ouverture : le λ -calcul

Le λ -calcul en appel par nom

On définit la syntaxe du λ -calcul comme suit :

$$M, N ::= x \mid \lambda x.M \mid MN$$

Et on introduit la sémantique opérationnelle suivante :

$$\frac{1}{(\lambda x.M)N \to M[N/x]} \ (\beta) \qquad \frac{M \to M'}{MN \to M'N}$$

Exercice 3:

(Prise en main)

- 1. Comment se réduit le terme $(\lambda x.x)(\lambda y.y)$?
- 2. Observer qu'il peut y avoir des soucis avec le renommage : comment se réduit le terme $(\lambda y.(\lambda x.xy))x$? L'astuce est d'observer que les variables liées peuvent être renommées (on appelle cela α -renommage). Par exemple, $\lambda z.xzt$ est le même terme que $\lambda y.xyt$.
- 3. Comment se réduit le terme $(\lambda x.xx)(\lambda x.xx)$?

Exercice 4:

- 1. Enoncer puis prouver un théorème de progrès.
- 2. Énoncer puis prouver un théorème de déterminisme.

Passons à des maths

Inf-demi-treillis complet

Un inf-demi-treillis complet est un ensemble ordonné (X, \leq) non vide tel que toute famille $F \subseteq X$ a une borne inférieure $\bigwedge F$.

Exercice 5:

(Treillis complets)

- 1. Montrer qu'un inf-demi-treillis complet est en fait un treillis complet.
- 2. Montrer que l'ensemble des parties d'un ensemble A quelconque est un treillis complet.
- 3. Justifier que l'ensemble des ouverts \mathcal{O} d'un espace topologique (X, \mathcal{O}) est un treillis complet. Quel est le sup d'une famille F d'ouverts? Quel est son inf?

Knaster-Tarski

Soit (X, \leq) un treillis complet et $f: X \to X$ une fonction monotone. Alors l'ensemble des points fixes de f est un treillis complet non vide.

Exercice 6:

(Une preuve de Knaster-Tarski) Soit f une fonction monotone de X dans X où X est un treillis complet.

- 1. Montrez que f possède un plus grand et un plus petit point fixe.
- 2. En déduire que l'ensemble des points fixes est un treillis complet.

Exercice 7:

(Utilisation de Knaster-Tarski) Démontrer le théorème de Cantor-Schröder-Bernstein : si A et B sont deux ensembles tels qu'il existe deux injections f et g respectivement de A dans B et de B dans A, alors A est en bijection avec B. Indication : faire un dessin avec deux patates, tout serait si beau si on pouvait trouver X tel que $f(X)^c$

Rappel sur les familles dirigées

Une famille D d'un ensemble (X, \leq) est dirigée si et seulement si

- 1. D est non vide;
- 2. pour tout $(x,y) \in D$, il existe $z \in D$, tel que $z \ge x$ et $z \ge y$.

Rappels sur les depos

Un dcpo est un ensemble partiellement ordonné (X, \leq) tel que toute famille dirigée possède un sup. Un dcpo est pointé s'il existe un élément minimal.

Exercice 8:

(Qui est quoi?) Dessiner les ensembles suivants et indiquer lesquels sont des dcpos, lesquels sont pointés, lesquels sont des treillis complets, le tout *en justifiant*.

- 1. $1 = \{\bot\}$.
- 2. $\mathbf{Bool}_{\perp} = \{0, 1, \perp\}$ avec x < y si et seulement si $x = \perp$ et $y \neq \perp$.
- 3. \mathbb{N} avec l'ordre usuel.
- 4. $\omega + 1$ avec l'ordre usuel.
- 5. \mathbb{N}^2 avec l'ordre produit.
- 6. $\{[x,y] \mid x,y \in I, x \leq y\}$ avec l'ordre \supseteq où I = [0,1].
- 7. $\{[x,y] \mid x,y \in I \cap \mathbb{Q}, x \leq y\}$ avec l'ordre \supseteq où I = [0,1].

Exercice 9:

Étant donné deux ensembles A, B, on note P(A, B) l'ensemble des injections partielles de A dans B. À chaque $f \in P(A, B)$, on associe sa restriction $\overline{f} \in P(A, A)$, telle que :

- Si f est définie sur $x \in A$, alors $\overline{f}(x) = x$,
- Sinon, \overline{f} n'est pas définie sur x.

Soient $f, g \in P(A, B)$, on note $f \leq g$ si $f = g \circ \overline{f}$.

- 1. Montrer que pour tous A, B, \leq est un ordre sur P(A, B).
- 2. $P(\{0,1\},\{0,1\})$ est-il un dcpo? Est-il pointé? Est-ce un treillis complet?
- 3. Qu'en est-il de P(A, B) en général?