Logique 2023-2024

TD 09 : Théories décidables

Nicolas Margulies nicolas.margulies@lmf.cnrs.fr Théo Vignon theo.vignon@lmf.cnrs.fr

Dans ce TD, on pourra utiliser le résultat suivant :

Soit φ une formule sans quantificateurs. Il existe une formule équivalente de la forme

$$\bigvee_{\in I} \left(\bigwedge_{j \in J} L_{i,j} \right)$$

où $L_{i,j}$ sont des formules atomiques. Cette formule est appelée DNF de φ (forme normale disjonctive).

1 Une autre théorie des nombres

Dans cet exercice, on considère la signature suivante : $\mathcal{F} = \{0(0), S(1)\}, \mathcal{P} = \{=(2)\}$. On considère également l'ensemble d'axiomes suivant :

$$\begin{aligned} (F_1) & \forall x. \ S(x) \neq 0 \\ (F_2) & \forall x, y. \ S(x) = S(y) \Rightarrow x = y \\ (F_3) & \forall x. \ \exists y. \ x = 0 \lor x = S(y) \end{aligned}$$
 Pour tout $n > 0$, $(C_n) & \forall x. \ S^n(x) \neq x$

On définit $T'=\{\ F_1\,,\,F_2\,,\,F_3\ \}$ et $T=T'\cup\{\ C_n\ \}_{n>0}.$

- 1. Montrez que tout modèle de T est infini.
- 2. Trouvez un modèle de T qui a pour domaine $\mathbb Q$
- 3. Montrez que, pour tout $n, T' \not\vdash C_n$. Conclure que T' et T ne sont pas équivalent.
- 4. Montrez que, pour tout $n, T' \cup \{C_k\}_{k < n} \not\vdash C_n$.
- 5. Soit A l'ensemble des combinaisons booléenes de formules atomiques.
 - (a) Soit F une conjonction de formules atomiques contenant x seulement d'un côté de l'égalité. Donnez un algorithme transformant la formule $\exists x. \ F$ en une formule sans quantificateurs G tel que $T \vdash \exists x. \ F \Leftrightarrow G$.
 - (b) Montrez que l'on peut éliminer les quantifications dans T
- 6. Montrez que *T* est complète.
- 7. Soit T" = $\{F_1, F_2\} \cup \{Ind_{F,x} \mid F \text{ formule avec au moins une variable libre } x\}$ où $Ind_{F,x}$ est l'axiome d'induction sur la formule F et la variable x. Montrez que T et T" sont équivalentes.

2 Théorie des ordres totaux denses sans extrémités

Nous travaillons sur le langage contenant les symboles de prédicat binaires < et =.

La théorie \mathcal{T}_O est définie par les axiomes de l'égalité et :

$$(O_1) \qquad \forall x \forall y. \quad \neg(x < y \land y < x)$$

$$(O_2) \quad \forall x \forall y \forall z. \quad x < y \land y < z \Rightarrow x < z$$

$$(O_3) \qquad \forall x \forall y. \quad x < y \lor x = y \lor y < x$$

$$(O_4) \quad \forall x \forall y \exists z. \quad x < y \Rightarrow x < z \land z < y$$

$$(O_5) \qquad \forall x \exists y. \quad x < y$$

$$(O_6) \qquad \forall x \exists y. \quad y < x$$

Les modèles de T_O sont les elsembles munis d'un ordre total dense sans extrémités.

- 1. Familiarisons-nous avec cette théorie :
 - (a) Montrez que ses modèles sont infinis.
 - (b) Donnez deux modèles non isomorphes de \mathcal{T}_O
 - (c) Montrez que \mathcal{T}_O est cohérente.

Le but de cet exercice est de montrer que cette théorie est décidable, en montrant qu'elle satisfait l'élimination des quantificateurs. On veut donc montrer que, pour toute formule ψ de la forme $\exists x. \bigvee_{i=1}^n \bigwedge_{i=1}^m L_{i,j}$ de variables libres x_1,\ldots,x_k où $L_{i,j}$ est un atome, il existe une formule φ sans quantificateurs avec les mêmes variables libres telle que $\mathcal{T}_O \vdash \forall x_1,\ldots,x_k$. $[\varphi \Leftrightarrow \psi]$.

- 2. Montrez que l'on peut se ramener au cas où ψ ne contient que des atomes de la forme : $x=x_i,\,x_i=x_j,\,x_i< x_j,\,x_i< x_i,\,x< x_i.$
- 3. Montrez qu'il suffit de montrer le résultat pour des formules de la forme $\exists x. \bigwedge_{j=1}^m K_j$ où K_j est de la forme $x = x_i, x_i = x_j, x_i < x_j, x_i < x,$ or $x < x_i$.

On considère donc par la suite une formule ψ de la forme décrite en question 3.

- 4. Traitez le cas où ψ contient une formule de la forme $x=x_i$.
- 5. Dans le cas contraire, montrez que ψ est équivalente à une formule de la forme $K_1 \wedge \exists x. \ K_2$ telle que :
 - $K_1 = \bigwedge_r K_r$ de variables libres x_1, \ldots, x_k ,
 - K_2 est de la forme

$$\bigwedge_{i \in I} x_i < x \quad \land \quad \bigwedge_{j \in J} x < x_j$$

où I et J sont des sous-ensembles de $\{1, \ldots, n\}$.

- 6. Montrez que si $I \cap J \neq \emptyset$ alors ψ est équivalente à \bot .
- 7. Montrez que si $I \cap J = \emptyset$ alors ψ est équivalente à une formule sans quantificateurs.
- 8. Concluez que \mathcal{T}_O est complète, et décidable.

3 Arithmétique de Presburger

On étudie une theorie sur les entiers naturels et l'addition appelée l'arthmétique de PRESBUR-GER. Plus précisément, c'est une théorie qur le langage contenant le symbole de prédicat binaire =, les symboles de fonctions 0, S et + et a pour axiomes toutes les formules vraies pour les entier naturels, i.e. toute formule Φ tel que pour toute valuation $\sigma: \mathcal{X} \to \mathbb{N}$, on a que $\mathbb{N}, \sigma \models \Phi$. Dans la suite on dit que deux formules φ_1, φ_2 sont équivalentes si pour toute valuation $\sigma, \mathbb{N}\sigma \models \varphi_1$ si, et seulement si, $\mathbb{N}, \sigma \models \varphi_2$.

1. Montrez que toute formule peut être transformée en une formule équivalente de formules atomiques de la forme $x=0, \ x=S(y)$ ou x+y=z (où $x, \ y, \ z$ sont des variables) sans aucune quantification universelle. On dit qu'une telle formule est *réduite*.

On encode les entiers naturels en base deux, avec le bit de poids fort sur la droite. On définit une fonction de décodage $\nu: \{0,1\}^* \to \mathbb{N}$ par :

$$\nu(\varepsilon) = 0 \qquad \qquad \nu(0w) = 2\nu(w) \qquad \qquad \nu(1w) = 1 + 2\nu(w)$$

Cette fonction est surjective mais pas injective. Soit $\mathcal{V}\subseteq\mathcal{X}$ un sous-ensemble de variables. Les valuations $\sigma:\mathcal{V}\to\mathbb{N}$ sont encodées par des mots sur l'alphabet $\Sigma_{\mathcal{V}}=\{0,1\}^{\mathcal{V}}$. Si w est un mot sur $\Sigma_{\mathcal{V}}$, on définit w_x comme etant la projection sur son x^{me} élément. La fonction ν peut être étendue comme une fonction de $\Sigma_{\mathcal{V}}^*$ vers les valuations sur \mathcal{V} par :

$$\nu(w) = (x \mapsto \nu(w_x))_{x \in \mathcal{V}}$$

Si Φ est une formule et $\mathcal V$ contient les variables libres de Φ , on écrit $[\Phi]_{\mathcal V}=\{w\in \Sigma_{\mathcal V}^*\mid \mathbb N, \nu(w)\models \Phi\}.$

- 2. Montrez que une formule Φ est statisfaite par $\mathbb N$ si, et seulement si, $[\Phi]_{fv(\Phi)} = \Sigma_{fv(\Phi)}^*$ où $fv(\Phi)$ est l'ensemble des variables libres de Φ .
- 3. Montrez que pour toute formule réduite Φ , il existe un automate fini A_{Φ} sur l'alphabet $\Sigma_{fv(\Phi)}$ qui reconnaît le langage $[\Phi]_{fv(\Phi)}$.
- 4. Montrez que l'arithmétique de PRESBURGER est décidable. Quelle est la complexité de cette procédure ?