
Architecture et Système 2023-2024
Département Informatique, ENS Paris Saclay

TP 11 : Threads and semaphores

1 Basics

How to compile :
gcc -pthread program.c -o program

How to declare, create and join threads :
pthread_t t1;

pthread_create takes as arguments a pointer to the thread ID, attributes to set the properties of thread,
a function pointer to the function that thread will run in parallel on start (this function should accept a void *
and return void * too) and arguments to be passed to the function. For instance :

pthread_create(&t1, NULL, &function, NULL);

Don’t forget to join the thread afterward :
pthread_join(t1, NULL);

The second argument is a pointer to store the return value from the thread. pthread_create and pthread_join
both return 0 if the thread has been created/joined successfully.

How to declare, initialize, destroy and use semaphores :
sem_t s1;
sem_init(&s1, 0, n);
sem_destroy(&s1);

sem_open takes as second argument 0 because the semaphore is shared between threads and not
processes. The argument n means that sem_wait can be called n times until the semaphore is locked. For
intance if n = 0 it means a sem_post must be used first. sem_open and sem_destroy both return 0 if the
semaphore has been opened/destroyed successfully.

sem_wait(&s1);
\\ critical code section
sem_post(&s1);;

sem_post frees the semaphore (i.e., increases n), sem_wait waits for the semaphore to be free (n > 0) and
decreases n.

See sem.c as an example.

How to declare, initialize, destroy and use mutexes :

pthread_mutex_t m1;
pthread_mutex_init(&m1, NULL);
pthread_mutex_destroy(&m1);
pthread_mutex_lock(&m1);
pthread_mutex_unlock(&m1);

1



2 Review

1. What is the main difference between threads and processes? Can we use them interchangeably?

2. Download the program mailbox.c from the website. You have seen this example in class. What
happens when the value of MAX is 10? 100? 1000? 1000000? Why does it not work as planned?
Can you fix it ?

Note : Observe that inside the for loop, we have only one line of code, i.e. mails++; Why still do
we have a race condition?

3. Now, write a program in C with two threads. The first thread displays even integers up to 100, the
second the odd. Use semaphores to ensure the correct order of integers.

3 Producer-Consumer

A typical problem in concurrent programming is that of producer and consumer : one thread produces
data that the other consumes. We consider the procon.c program. Here the producer gets characters
from a file and sends them to a shared space with the thread ’consumer’ who displays them on the screen.
However, in the current version, no synchronization exists in between. Modify the program so that it displays
the contents of a file correctly.

4 Binary Semaphores vs. Mutexes

Download the program mutexvsem.c. Run it. Do you see any errors? Now, change the mutexes and
have it use semaphores instead. Does it work?

Can you justify your observation?

⋆ ⋆ ⋆

5 Counting semaphores

Implement a logging queue using semaphores. You can use the template given in login.c. Your objec-
tive is to ensure that the resource (in our case the section enclosed in ’finite resource’) is used by at most
12 users at a time. Create 15 threads and use a semaphore to manage the resource.

6 The function of Hénon

We will calculate the orbit of a dynamic system of dimension 2. The function of Hénon is described by
the system

Ha,b =

{
xn+1 = a− byn − x2n

yn+1 = xn.

We already have the function from last week. We will modify the program to use threads instead. We will use
one thread to calculate the sequence(xn)n and another thread for the sequence(yn)n. Propose a means of
synchronization to ensure interleaving of the computations of xn and yn. Implement it.

We can plot the function with the command gnuplot henon.p after having downloaded the script "he-
non.p". The file henon.dat must be in the same folder as henon.p. (You will need gnuplot for this).

Observe the graph you get for values a = 1.4 et b = −0.3.

2



7 Mandelbrot

Let c be a complex number. Consider the series z0 = 0 and zn+1 = z2n + c for n ≥ 0. The Mandelbrot
set is defined as the set of values c such that the zn series is bounded. We know that this is the case if
zn never leaves a circle of radius 2 around 0. If the series ever leaves this circle, let m(c) be the smallest
index n such that this is the case. A popular application for m(c) is to create pretty pictures ; we associate
the screen with a rectangle and each pixel with its corresponding c value ; the pixel is then painted with a
color corresponding to m(c). The course web page contains such a program. Your task is to speed it up
by running several threads in parallel. You can use cat /proc/cpuinfo to see how many cores a machine
has. Each thread will work on a different a different part of the image.

8 Binary and Semaphores (Bonus)

We want to have n threads that each display the corresponding number from 0 to n−1. Howerever, they
should synchronize to get them in order. In order to do this, they should use semaphores. During class, you
saw a method which uses n− 1 semaphores but we can do it in log2(n) semaphores.
Hint : The semaphores should represent the binary digits of the thread whose turn it is
Hint 2 : Handle endianess with care

3


	Basics
	Review
	Producer-Consumer
	Binary Semaphores vs. Mutexes
	Counting semaphores
	The function of Hénon
	Mandelbrot
	Binary and Semaphores (Bonus)

