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TD 2 and 3 : Construction of a computer from NAND chips

1 Introduction

For this TP, you can find the zip folder containing all the requisite files here: http://perso.crans.org/
nicomarg/teaching/ArchiSys/bootstrap.zip.

We will start from NAND chips and build increasingly complicated logical units until we have a computer
capable of running programs.

For this lab, we will use a Hardware Simulator. Its role will be to check that your logical units (chips) are
well implemented. In addition, it will also help you with your debugging your chips. (To launch it, use the
command line ./tools/HardwareSimulator.sh inside the comparch folder.)

The language in which you will write your chips is a DSL (Domain Specific Language), i.e. a language
specifically dedicated to the writing of your chips. In the next section, this language will be briefly introduced
so that you can start writing your first chips.

Each chip consists of three files:

• XXX.hdl : this is the file that you will write the code of your chips in.

• XXX.tst : this is a pre-written file which contains tests to verify if your code is right.

• XXX.cmp : this is also pre-written with the output of the test file.

The last two files are used by the Hardware Simulator to check the correctness of your chips. So for the
most part, you will only edit files with the extension .hdl.

Using the Hardware Simulator

Once the Hardware Simulator is started, to check your chip you have to follow these steps:

• Click on the load script button to load the .tst file

• Click the run button (blue double-arrow) to run the tests

To save time, you can select the no animation button in the animation menu.

Plan

This TP is divided into 4 sections :

1. In Section 3, you have to implement the basic chipset : And, Or, ...

2. In Section 4, we are interested in the conception of an ALU (Arithmetic Logic Unit)

3. In Section 5, we are interested in non-sequential chips in order to create the memory (RAM) of our
computer
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2 Hardware Language

Hardware Language is a language that allows you to program chips. All the chips you are going to write
respect the following format (example of the AND gate) :

/**
* And gate:
* out = 1 if (a == 1 and b == 1)
* 0 otherwise
*/

CHIP And {
IN a, b;
OUT out;

PARTS:
//TODO

}

Each chip begins with a comment summarizing the expected behavior of the chip. Then, the code of a
chip is divided into three parts:

• IN : this line gives names to the input pins. Here, the AND gate has two input pins named a and b

• OUT : this line gives names to the output pins. Here, the AND gate has a single output pin named out

• PART : This part contains the program you are going to write to implement the chips. This part is
made up of a sequence of texttt instructions (described below) separated by semicolons.

The format of an instruction is as follows:

XXX(ipin1=var1, ipin2=var2, ..., opin1=var3, opin2=var4, ...)

The semantics of this instruction is that it calls the chip XXX :

• it connects to the input pin ipin1 the pin var1, to the input pin ipin2 the pin var2.

• var3 is the new name of the output pin opin1, and var4 is the new name of the output pin opin2

For the first two sections, it is expected that var3 and var4 are new names (new variables are created),
while var1 and var2 are names that must already exist.

For example, when you want to create a new chip and you want to use the AND chip, you can write the
following instruction:

...
AND(a=a1,b=a2, out=outand)

assuming that the variables a1 and a2 already exist.

3 Basic chips

We suppose in this section that the NAND chip is already constructed. Its interface is as follows:

/**
* Nand gate:
* out = 1 if (a == 0 or b == 0)
* 0 otherwise
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*/

CHIP Nand {
IN a, b;
OUT out;

PARTS:
BUILTIN

}

This is the only chip that you can use at the start. One you have correctly implemented a chip, it can be
used to implement later chips. The comments at the start of each chip are self-explanatory, so there are
no additional comments required for the construction. However, the below order is a suggested order to
efficiently implement the necessary chips:

The optimal number of components are written in the brackets in each of the components. Try to use at
most those many components.

1. Not (1 instruction)

2. And (2 instructions)

3. Or (3 instructions)

4. Or8Way (7 instructions)

5. Xor (3 instructions)

6. XorCompact (4 instructions - all Nand)

7. Not16 (16 instructions)

8. And16 (16 instructions)

9. Or16 (16 instructions)

10. Mux (4 instructions)

11. DMux (2 instructions)

12. Mux16 (16 instructions)

13. Mux4Way16 (3 instructions)

14. Mux8Way16 (3 instructions)

15. DMux4Way (3 instructions)

16. DMux8Way (3 instructions)

4 ALU

Adder

From the basic bricks that we built in the previous section, we will try to build a logical arithmetic unit (ALU).
Our arithmetic unit will be able to add two binary integers coded on 16 bits, but not only. It could increment
/ decrement, do bitwise operations like x & y or x | y. For this, a first objective will be to recode a 16-bit
adder. For this, you will have to implement the following chips:

1. HalfAdder (2 instructions)
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2. FullAdder (3 instructions)

3. Add16 (16 instructions)

4. Inc16 (1 instruction)

ALU

Once the previous gates have been implemented, we are now interested in the ALU. The idea of this chip
is to take two vectors encoded on 16 bits as inputs x and y and to calculate at output a vector of 16 bits
out(x, y). out is a function which is parameterized by 6 flags (as shown in Fig. 4).

Figure 1: The Arithmetic Logic Unit

Output flag : de plus, il vous est demandé de produire deux autres sorties :

• zr, est à 1 si out(x, y) = 0, 0 sinon

• ng, est à 1 si out(x, y) < 0, 0 sinon

Preliminaires : Remember that −x =!x+ 1.
A few questions before embarking on the implementation (the order of the flags is the one presented

above):

• What is the function out(x, y) when we pass the flags as a vector (0, 1, 0, 1, 0, 1) ?

• What is the function out(x, y) when we pass the flags as a vector (0, 0, 1, 1, 0, 1) ?

• What is the function out(x, y) when we pass the flags as a vector (1, 1, 1, 1, 1, 1) ?

• Is it possible to calculate x+ 1 ? If yes, what should be the value of the flags?

• Is it possible to calculate x− 1 ? If yes, what should be the value of the flags?

• Is it possible to calculate x− y ? If yes, what should be the value of the flags?

Implementation : Now, implement the following chip:

5. ALU (15 instructions)
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5 Memory

This part is interested in logic gates whose behavior depends on time. In other words, one of the output
pins can be connected to one of the input pins. This implies that in practice, this style of chip uses a clock,
which will regulate the electrical signal. However, in our case, and to simplify the design of our chips, we
are not going to manipulate the clock directly. Instead, we’ll assume that we have a built-in chip, like the
nand gate given to us. This chip, called DFF copies its input to its output at each clock tick (see Fig. 5). Note
that using a clock is the same as discretizing time.

(The Hardware Simulator is a Java program that isn’t very smart about memory management. As
a result, you should use the built-in versions of lower level RAM devices when constructing larger RAM
devices (after you understand how to make the lower-level devices). Otherwise, the Hardware Simulator
will recursively generate a ton of memory-resident software objects, each representing one of the parts
that make up a typical RAM device. This may cause the simulator program to run slowly or to run out of
memory. Hence, the folders have been divided into "a" and "b" to avoid this problem.)

Figure 2: DFF

For this section, program the chips in the following order:

1. Bit (2 instructions)

2. Register (16 instructions)

3. PC (5 instructions)

4. RAM8 (10 instructions)

5. RAM64 (10 instructions)

6. RAM512 (10 instructions)

7. RAM4K (10 instructions)

8. RAM16K (6 instructions)

6 Computer

In this part, we will reuse the RAM built in the previous part as well as our ALU to build a real computer.
Our computer will use two external peripherals: a keyboard and a screen (which are built-in), and whose
specification is given to you respectively in Fig. 8 and Fig. 9. Note that the Hardware Simulator manages the
inputs /outputs for you. In our case, we will not take care of the entries. In the Hardware Simulator, under
the option View you can select Screen to see what some tests produce (like ComputerRect-external.tst).
Our architecture has two distinct memories blocks, one will store our data (RAM) and the other will store the
program we are running(ROM). For the ROM, we will use a built-in chip that will simulate this component
see 10.
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In every cycle the CPU preforms one of the possible instructions. The instructions of the Hack CPU are
coded in 16 bits. We now go over those instructions are and how they are interpreted by the CPU. The
CPU uses two registers : A, and D, and the memory in the address accessed in the previous cycle which is
denoted by M(A). All the instructions are of two types "A-instruction" or "C-instruction".

A-instruction(Fig. 3) tells the CPU from which address to fetch M(A) from. This instruction is recognized
by the 15th bit of the instruction being set to 0. The rest of the bits refer to the address in the memory we
want to fetch for the next cycle. So for example the instruction 0101000000000101 tells the CPU to fetch
the memory in the address 101000000000101 for the following cycle.

Figure 3: A-instruction

C-instruction(Fig. 4) this instruction is treated as a sequence of control bits that determine which
function the ALU should compute, and in which registers the computed value should be stored. This
instruction is recognized by the 15 – 13 bits of the instruction being set to 111. Next we break the instruction
to three parts comp, dest, and jump, see 4.
The flags c1, c2, . . . , c6 are going to the flags of the ALU, where :

c1 = zx; c2 = nx; c3 = zy; c4 = ny; c5 = f ; c6 = no;

The flag a specifies which data should enter the input y of the ALU. If a = 0 then its the register A otherwise
its M(A). Note that, the input x of the ALU is always connected to D.
Next we have the flags d1, d2, d3 which specify where should the result of the ALU be stored. If the flag d1
is set to one then the the output is stored in A, if d2 is set to one then to D, and if if d3 is set to one then to
M(A). For example (d1, d2, d3) = (1, 0, 1) tells the CPU to save the result in A and M(A), but not in D.
The last set of flags are j1, j2, j3, which indicate whether we need to replace the value of the PC(program
counter) by the value of A(jump to the instruction in address A). The jump happens according to the output
of the ALU, for the different cases see Fig. 5.

Figure 4: C-instruction

Now, to work: implement the chips in the following order:

1. Memory (7 instructions)

2. CPU (20 instructions)

3. Computer (3 instructions)

The design of the CPU is also illustrated in, 6, (note that it misses some details).
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Figure 5: The jump field of the C-instruction. Out refers to the ALU output (resulting from the instruction’s
comp part), and jump implies “continue execution with the instruction addressed by the A register.”

Figure 6: CPU

Figure 7: Computer
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Chip Name:
Keyboard // Memory map of the physical keyboard.

// Outputs the code of the currently
// pressed key.

Output:
out[16] // The ASCII code of the pressed key, or

// one of the special codes
Function:
Outputs the code of the key presently pressed on the
physical keyboard.
Comment:
This chip is continuously being refreshed from a
physical keyboard unit (simulators must simulate this
service).

Figure 8: Keyboard

Chip Name:
Screen // Memory map of the physical screen
Inputs:
in[16], // What to write
load, // Write-enable bit
address[13] // Where to write
Output:
out[16] // Screen value at the given address
Function:
Functions exactly like a 16-bit 8K RAM:
1. out(t)=Screen[address(t)](t)
2. If load(t-1) then Screen[address(t-1)](t)=in(t-1)
(t is the current time unit, or cycle)
Comment:
Has the side effect of continuously refreshing a 256
by 512 black-and-white screen (simulators must
simulate this device). Each row in the physical
screen is represented by 32 consecutive 16-bit words,
starting at the top left corner of the screen. Thus
the pixel at row r from the top and column c from the
left (0<=r<=255, 0<=c<=511) reflects the c%16 bit
(counting from LSB to MSB) of the word found at
Screen[r*32+c/16].

Figure 9: Screen
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Chip Name:
ROM32K // 16-bit read-only 32K memory
Input:
address[15] // Address in the ROM
Output:
out[16] // Value of ROM[address]
Function:
out=ROM[address] // 16-bit assignment
Comment:
The ROM is preloaded with a machine language program.
Hardware implementations can treat the ROM as a
built-in chip. Software simulators must supply a
mechanism for loading a program into the ROM.

Figure 10: ROM
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