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Design algorithms to estimate probabilities in some infinite-state
Markov chains, with guarantees

Our contributions

Review two existing approaches (approximation algorithm and estimation
algorithm) and specity the required hypothesis for correctness

Propose an approach based on importance sampling and abstraction to
partly relax the hypothesis

Analyze empirically the approaches
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Discrete-time Markov chains

Discrete-time Markov chain (DTMC)

C = (3, sy, 0) with S at most denumerable, s, € Sand o : § — Dist(S)

+ effectivity conditions...
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Very useful even beyond
reachability properties
(decomposition in BSCCs)

»  Aim: compute the probability of property F @

» Forstate s, let x; be such that: .

1 fs= O
0 fs FIAFO
L 2., P(s > 1)-x, otherwise

S
|l

»  The least fixpoint of this equation characterizes P (F ©))

» Forfinite DTMCs, it amounts to solving a system of linear equations (polynomial
time) [RKNPOL

. For the previous example: IPSO(F@) =1/19

[RKNPO04] J. Rutten, M. Kwiatkowska, G. Norman, D. Parker. Mathematical techniques for analyzing concurrent and probabilistic systems (Monograph) 5
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» Forsome Markov chains with some structured high-level description, explicit
formulas may sometimes be given:

« Reachability probabilities in probabilistic pushdown automata can be expressed
N the first-order theory of the reals |[EKMOB], thus they can be approximated

» Specific approaches for decisive Markov chains
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Decisiveness

B =(seS|s FIFO)

Decisiveness

ADTMC € is decisive fromswrt. @ if P(FO) VF @) = 1

» Examples of decisive Markov chains: finite Markov chains, probabilistic lossy
channel systems, probabilistic VASS, noisy Turing machines, ...

» Example/counterexample:

« Recurrent random walk (p < 1/2): decisive

L=p L-p - Transient random walk (p > 1/2): not decisive



Deciding decisiveness?

Classes where decisiveness can be decided

» Probabilistic pushdown automata with constant weights
» Random walks with polynomial weights

» So-called probabilistic homogeneous one-counter machines with polynomial
weights (this extends the model of quasi-birth death processes)
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Approximation scheme

»  Aim: compute probability of F ©)
Given e > 0, forevery n, compute:

, @ =(seS|s FIFO)

Pzes — P(an@)
Py°
So untilp,}l/eS
¢ g ¢ p/® <PEF®) <1 —p°
() e A Vi
(5. Py <PEFO) <1 -pi°

IA : VI

lim p,*° = P(FO)

n— Qoo
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Non-converging example

The approximation scheme
does not converge

Q=0
lim p)*° =PFQ) < 1

n——+oo

lim 1-p°=1
n—-+0oo
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Termination of the approx.
scheme

Approximation scheme

Given e > 0

€ is decisive from sy wrt. ©
Iff
the approximation scheme converges
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Statistical model-checking

Sample N paths
nl —_

N )
N, = ny

'02 n3=n2+1

P3

N
Return — + some confidence interval
N
12



Termination and efficiency

Termination (To our knowledge, never expressed like this)

@ is decisive from s, wrt. ©
i
a sampled path starting at s, almost-surely hits @ or Q
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Decisiveness VS recurrence

o

Cannot

reach ©

€ is decisive from s wir.t. @

\ 2 o \
€ is recurrent
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» We are interested in evaluating the quantity E(f; g )
» IfL=1gg. thenE(fy o) = PEF O)

The two previous approaches extend under the
same conditions to B-bounded @ -functions

3B* 2
lete,0 > 0st. N > —210g<—
€

/
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Another numerical generic

approach

Divergent Markov Chains

A Markov chain M is divergent w.r.t. sg and A if there exist two computable
functions fo and f; from S to R>¢ such that:

Q@ Forall0 <6 <1, Prags, (Ffi'([0,6])) < 6;
@ Forall se€ S, Pras(FA) < fi(s);
@ Forall0 <0 <1, {s| fo(s) > 0N fi(s) > 0} N Post},(so0) is finite.

Post’,(so)

Prag,so (Ffy (0, 6]) < 6
--------------->

[{s | fo(s) > O A f1(s) > 0} N Post’y ,(so)| < oo
m,

" Prag o(FA) <6

N

19



Another numerical generic

approach

Divergent Markov Chains

A Markov chain M is divergent w.r.t. sg and A if there exist two computable
functions fo and f; from S to R>¢ such that:

Q@ Forall0 <6 <1, Prags, (Ffi'([0,6])) < 6;
@ Forall se€ S, Pras(FA) < fi(s);
@ Forall0 <0 <1, {s| fo(s) > 0N fi(s) > 0} N Post},(so0) is finite.

19



Importance sampling for

rare events evaluation

» Issue: rare eventsin

Rare-Event Problem tor Statistical Model Checking

Problem Statement

@ We want to estimate the probability of a rare event e
occurring with probability close to 1071°.

@ We want a confidence level of 0.99.

@ We are able to compute 10° trajectories.

Possible Outcomes

Number of
occurrences of e Probability Confidence interval
0 ~1—10"° [0,7.03- 10 7]
1 <107° [6.83-10719,1.69 - 10~
n>1 < 10712 > 6.83- 10710

20
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We propose to use the importance

sampling approach to analyze some
non-decisive DTMCs!

First time that importance
sampling is used not to accelerate
the analysis, but to enable the
analysis
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For effectivity, should
be computable
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Properties of the biased
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Likelihood and biased function

if p endsin ©

otherwise

» The analysis of € can be transferred to that of €’

» The two previously described methods (approx and estim via SMC) can be applied
to €’ as soon as €' is decisive wrt. © from spand L'is (effectively) bounded

e Decisiveness of €' is required, decisiveness of & is not
e ['canbe unbounded even if L is bounded
» Need of developing methods to ensure nice properties of €’
. for rare events: approach for finite Markov chains via coupling and

abstractions with reduced variance

24
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Properties of the approach

Py (FO) = u* (alsy)) - P (F ©)

L'(p) = L(p) - u*(a(first(p)))

» If f1 o is effectively bounded for paths from s, then f; . ¢ is also effectively bounded
for paths from s. It is in particular the case whenf; ¢ = 1g e

»  \We need:
e Toensure the decisiveness of €’

e Tocompute u°( - ) (usefulin two places: to sample paths and to compute the
final value when hitting &)

26



Role of I

» Standard approach for importance sampling: no set F
(F coincides with @ )

»  Will be useful to adjust the properties satisfied by the abstraction to be correct

- Requirement will be « outside F'»
« Forinstance, congestion of systems

27
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Theorem

Let & be an LMC with level function 4, C[g;) the random walk of parameter p. Assume

1
there is N S.t. 5 < p < p, =inf{PT(s) | A(s) > Ny} . Then:

) Cg;? is an abstraction for € .
p-divergence

» The corresponding biased Markov chain € is decisive w.r.t. @

» The expected time to sample an execution is finite

Argument based on a variation on Foster’s theorem:

e |fthereis e > 0 and anon-negative Lyapunov function & s.t. forevery s &€ A,
ZL(s) — Z P(s,s")YZL(s") > €, thenforalls & A, the expected timed to A is finite, implying

S

that A is an attractor + generalization (written

by Serge yesterday)
Apply this theorem to €’
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» Automaton with a stack

2a!
» Transition rules of the type g = qg'witha € Xandw &€ ><2

» Probabilities given by weights
« Ingeneral: W(¢t, w) with f a transition and w € 2* a stack content
« [EKMOB]: Wonly dependsont

- Polynomial weight: W(t, w) is a polynomial in |w | Analysis can be done
using the first-order theory of
1 n 5 h |
A->C A—-BB B>Sce (SIS

BAAA cLc

» (Can be seen as alayered Markov chain, using the length of the stack content

» Local conditions on transition rules to ensure the hypotheses of the theorem

[EKMO6] J. Esparza, A. Kucera, R. Mayr. Model checking pushdown automatas (LMCS)
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» Implementation of the two approaches in tool Cosmos
(development effort: Benoit Barbot)

» Cosmos: essentially iImplements statistical model checking

» Add the approximation algorithm, as efficiently as we could think of
« Front of visited states, select the most probable one to pursue
« Efficient implementation of small numbers

10711072 1073107410210 1077|108 1072 10-10

« Data structures: a hash table (to know the states which are present) and a max-
heap to select the most probable state

» Some experiments have been done
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« Apply Approx and Estimon € £ [aElE=ErE i
larger is N,

» If € is p-divergent
- Compute a corresponding NV

. Use the abstraction Cg]; with desactivation zone F* = [0; N,]

«  Apply Approx and Estim on &’ (computed on-the-fly)

Is there a best p?

What's the trade-off? | o
» p big: large desactivation zone (NO)

» p small: small bias (few trajectories end
upins_)
Note: in all experiments, the confidence is set to 99 %
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