

Beyond Decisiveness: When Statistical Verification Meets Numerical Verification

Benoît Barbot (LACL), Patricia Bouyer (LMF), Serge Haddad (LMF)

Supported by ANR projects MAVeriQ and BisoUS (not submitted yet, hopefully soon on ArXiV)

Purpose of this work

Design algorithms to estimate probabilities in some **infinite-state**Markov chains, **with guarantees**

Purpose of this work

Design algorithms to estimate probabilities in some **infinite-state**Markov chains, **with guarantees**

Our contributions

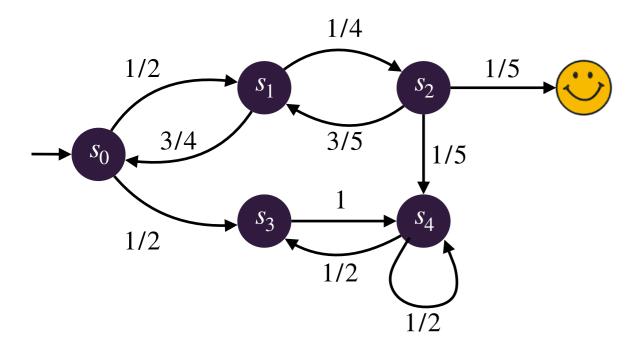
- Review two existing approaches (approximation algorithm and estimation algorithm) and specify the required hypothesis for correctness
- Propose an approach based on importance sampling and abstraction to partly relax the hypothesis
- Analyze empirically the approaches

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Discrete-time Markov chain (DTMC)

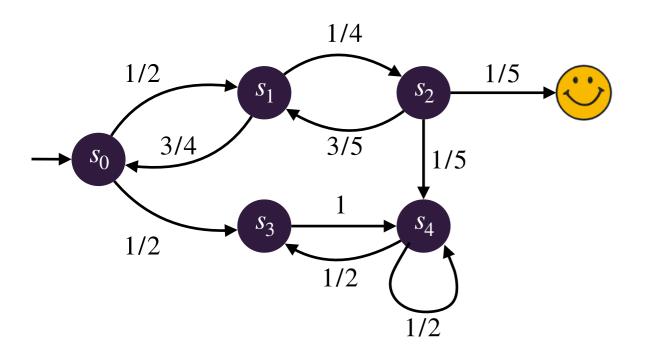
 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

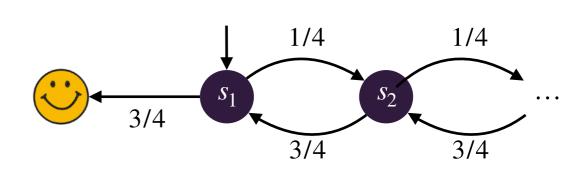


Finite Markov chain

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$





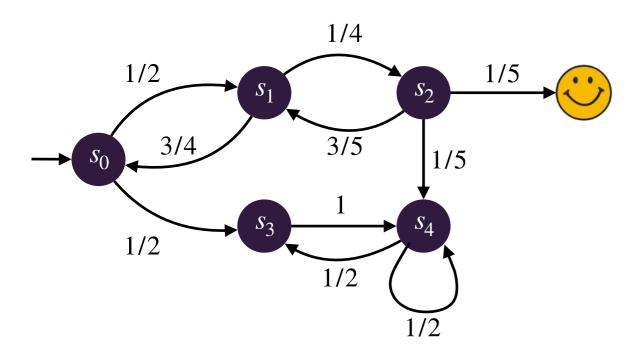
Finite Markov chain

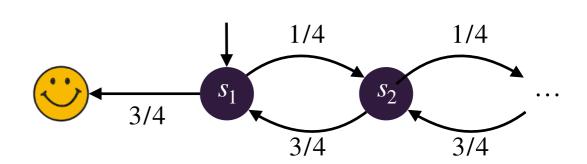
Denumerable Markov chain (random walk of parameter 1/4)

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

+ effectivity conditions..

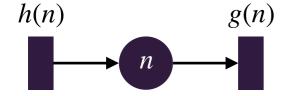


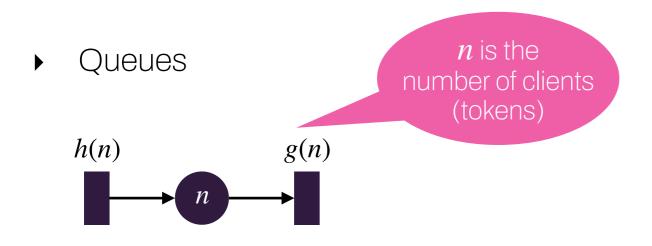


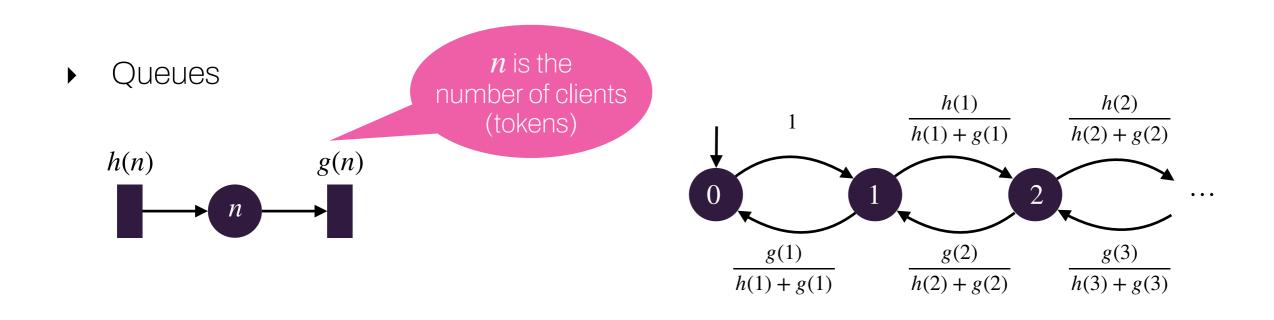
Finite Markov chain

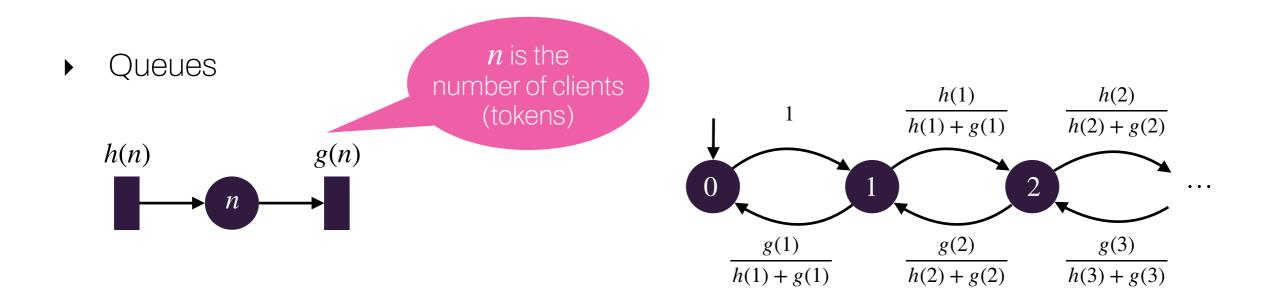
Denumerable Markov chain (random walk of parameter 1/4)

Queues



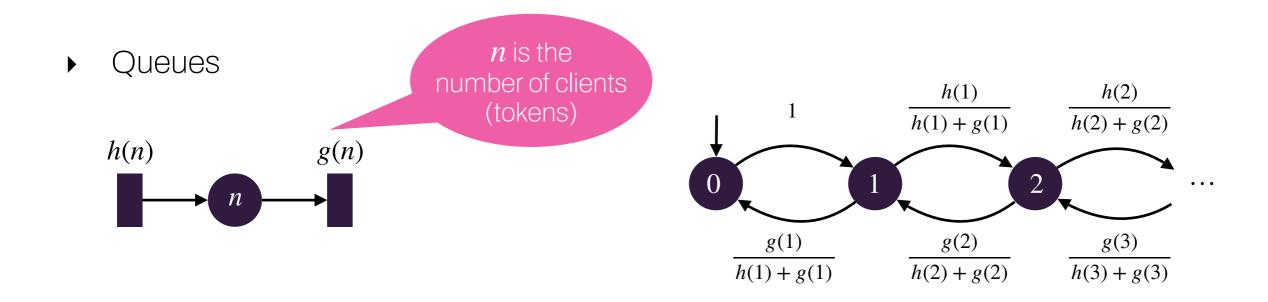






Probabilistic pushdown automata

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

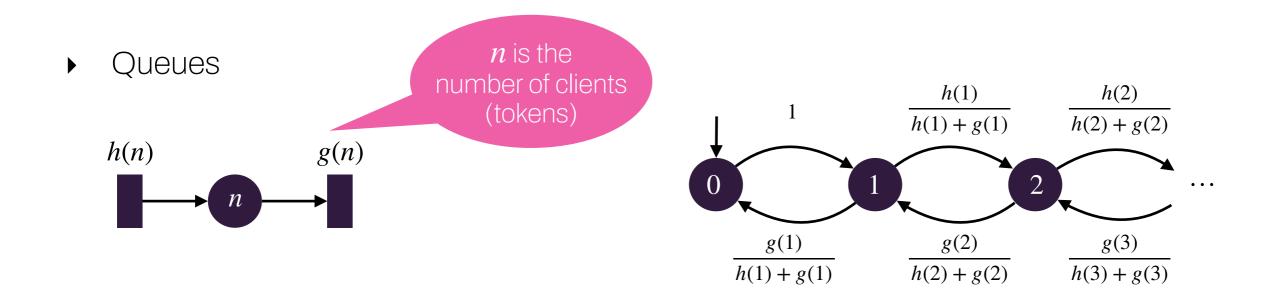


Probabilistic pushdown automata

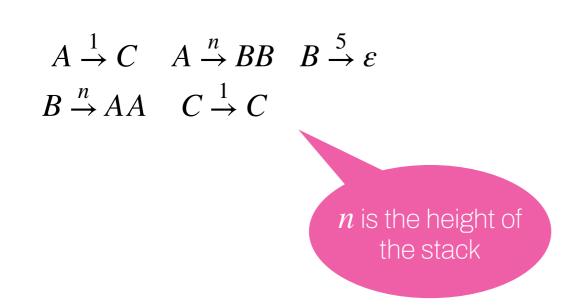
$$A \xrightarrow{1} C$$
 $A \xrightarrow{n} BB$ $B \xrightarrow{5} \varepsilon$

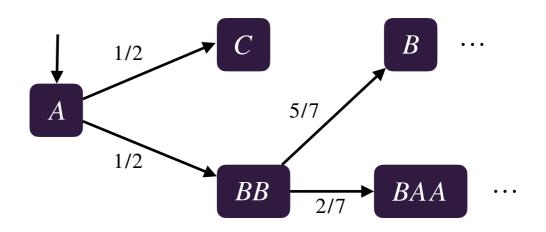
$$B \xrightarrow{n} AA$$
 $C \xrightarrow{1} C$

$$n \text{ is the height of the stack}$$



Probabilistic pushdown automata





lacktriangle lacktriangle Aim: compute the probability of property ${f F}$ \bigodot

Very useful even beyond reachability properties (decomposition in BSCCs)

lacktriangle lacktriangle Aim: compute the probability of property ${f F}$ $\stackrel{ extstyle extstyle$

Very useful even beyond reachability properties (decomposition in BSCCs)

- lacktriangle Aim: compute the probability of property ${f F}$ \bigodot
- For state s, let x_s be such that:

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

Very useful even beyond reachability properties (decomposition in BSCCs)

- lacktriangle Aim: compute the probability of property ${f F}$ \bigodot
- For state s, let x_s be such that:

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

The least fixpoint of this equation characterizes $\mathbb{P}_s(\mathbf{F} \circlearrowleft)$

Very useful even beyond reachability properties (decomposition in BSCCs)

- lacktriangle Aim: compute the probability of property ${f F}$ \bigodot
- For state s, let x_s be such that:

$$x_{s} = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_{t} \mathbb{P}(s \to t) \cdot x_{t} & \text{otherwise} \end{cases}$$

- The least fixpoint of this equation characterizes $\mathbb{P}_s(\mathbf{F} \circlearrowleft)$
- For finite DTMCs, it amounts to solving a system of linear equations (polynomial time) [RKNP04]

Very useful even beyond reachability properties (decomposition in BSCCs)

- lacktriangle Aim: compute the probability of property ${f F}$ \bigodot
- For state s, let x_s be such that:

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- The least fixpoint of this equation characterizes $\mathbb{P}_s(\mathbf{F} \circlearrowleft)$
- For finite DTMCs, it amounts to solving a system of linear equations (polynomial time) [RKNP04]
 - For the previous example: $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$

No general method exists

- No general method exists
- For some specific Markov chains, explicit formulas are known

- No general method exists
- For some specific Markov chains, explicit formulas are known
 - Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known
 - Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known
 - Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \odot) = 1$
 - . Random walk of parameter p>1/2: $\mathbb{P}_{s_n}(\mathbf{F} \circlearrowleft)=\kappa^n$, where $\kappa=\frac{1-p}{p}$

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known

- Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$
- . Random walk of parameter p>1/2: $\mathbb{P}_{s_n}(\mathbf{F}^{\ensuremath{\mathfrak{C}}})=\kappa^n$, where $\kappa=\frac{1-p}{p}$

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known

- Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$
- . Random walk of parameter p>1/2: $\mathbb{P}_{s_n}\big(\mathbf{F}^{\ensuremath{ \odot}}\big)=\kappa^n$, where $\kappa=\frac{1-p}{p}$
- For some Markov chains with some structured high-level description, explicit formulas may sometimes be given:

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known

- Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$
- . Random walk of parameter p>1/2: $\mathbb{P}_{s_n}\big(\mathbf{F}^{\ensuremath{\mathfrak{C}}}\big)=\kappa^n$, where $\kappa=\frac{1-p}{p}$
- For some Markov chains with some structured high-level description, explicit formulas may sometimes be given:
 - Reachability probabilities in probabilistic pushdown automata can be expressed
 in the first-order theory of the reals [EKM06], thus they can be approximated

Recurrent Markov chain

Null recurrent if p = 1/2Positive recurrent if p < 1/2

- No general method exists
- For some specific Markov chains, explicit formulas are known

- Random walk of parameter $p \leq 1/2$: $\mathbb{P}_{s_n}(\mathbf{F} \overset{\smile}{\smile}) = 1$
- . Random walk of parameter p>1/2: $\mathbb{P}_{s_n}\big(\mathbf{F}^{\ensuremath{\mathfrak{C}}}\big)=\kappa^n$, where $\kappa=\frac{1-p}{p}$
- For some Markov chains with some structured high-level description, explicit formulas may sometimes be given:
 - Reachability probabilities in probabilistic pushdown automata can be expressed in the first-order theory of the reals [EKM06], thus they can be approximated
- Specific approaches for decisive Markov chains

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

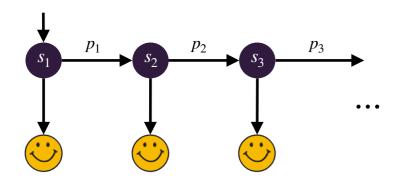
Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:

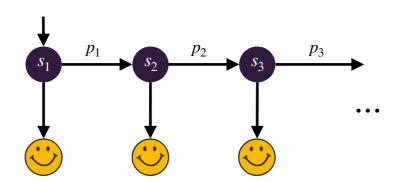


$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



$$\mathbf{P}(\mathbf{G} \neg \mathbf{O}) = \prod_{i \geq 1} p_i$$

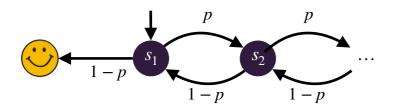
ullet Decisive iff this product equals 0

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:



- Recurrent random walk ($p \le 1/2$): decisive
- Transient random walk (p > 1/2): not decisive

Deciding decisiveness?

Classes where decisiveness can be decided

- ▶ Probabilistic pushdown automata with constant weights [ABM07]
- Random walks with polynomial weights [FHY23]
- ▶ So-called probabilistic homogeneous one-counter machines with polynomial weights (this extends the model of quasi-birth death processes) [FHY23]

Approximation scheme

ightharpoonup Aim: compute probability of ${f F}$

Approximation scheme

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{\smile}{\smile}$

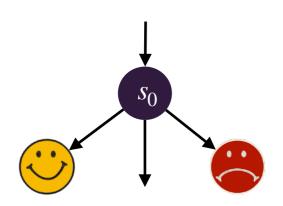
- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$

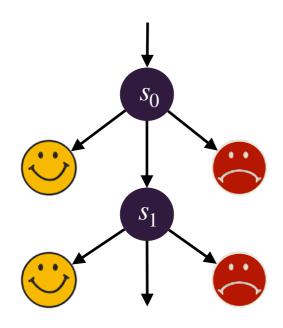


Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F} \circlearrowleft) \le 1 - p_1^{\text{no}}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$



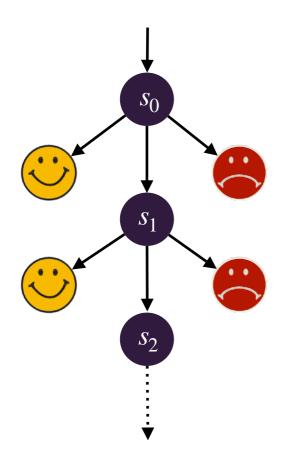
Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F} \circlearrowleft) \leq 1 - p_1^{\text{no}}$$

IA VI
 $p_2^{\text{yes}} \leq \mathbb{P}(\mathbf{F} \circlearrowleft) \leq 1 - p_2^{\text{no}}$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{\circlearrowleft}$
- $\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \overset{\smile}{\smile} \}$



Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_1^{\mathrm{no}}$$

In vi

 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_2^{\mathrm{no}}$

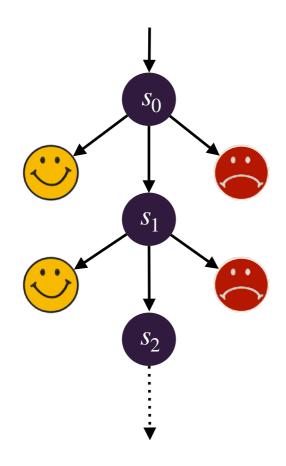
In vi

In vi

In vi

In vi

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{\circlearrowleft}$
- $\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \overset{\smile}{\smile} \}$



Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_1^{\mathrm{no}}$$

In vi

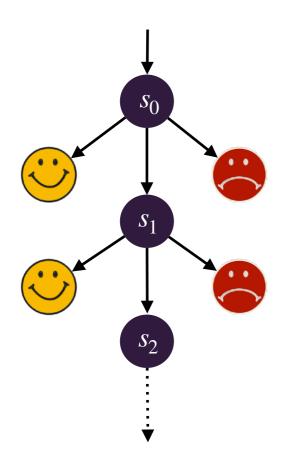
 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_2^{\mathrm{no}}$

In vi

 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_2^{\mathrm{no}}$

Does it converge?

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$ \smile $}}{ ext{$ \smile $}}$



Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_1^{\mathrm{no}}$$

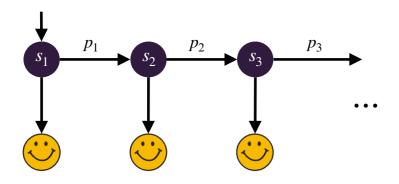
In vi

 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_2^{\mathrm{no}}$

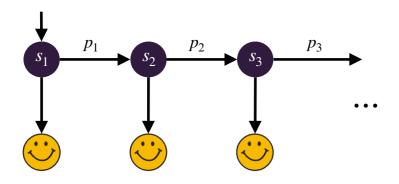
In vi

 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F} \odot) \leq 1 - p_2^{\mathrm{no}}$

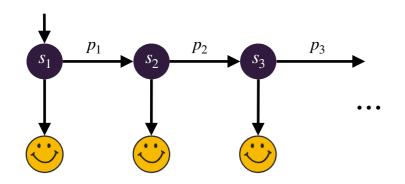
$$\lim_{n\to\infty} p_n^{\text{Yes}} = \mathbb{P}(\mathbf{F} \circlearrowleft)$$



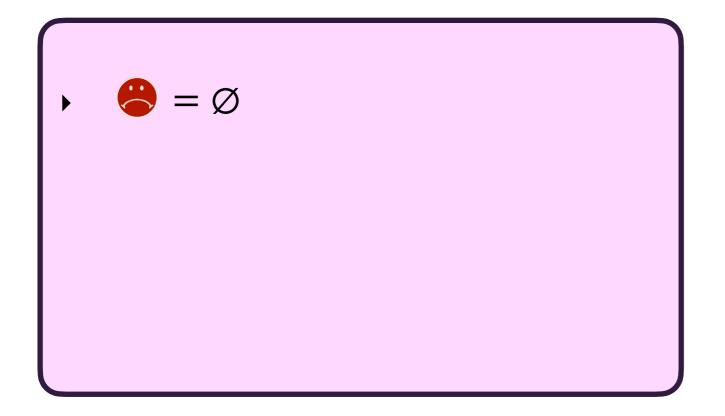
with
$$\prod_{i\geq 1} p_i > 0$$

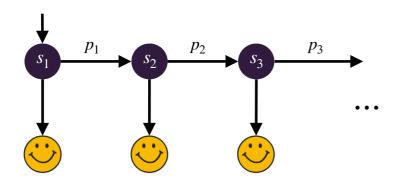


with
$$\prod_{i\geq 1} p_i > 0$$



with
$$\prod_{i\geq 1} p_i > 0$$

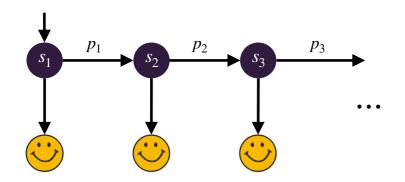




with
$$\prod_{i\geq 1} p_i > 0$$

$$\rightarrow$$
 $= \emptyset$

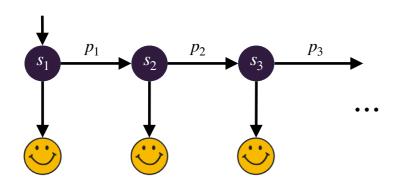
$$\lim_{n \to +\infty} p_n^{\text{yes}} = \mathbb{P}(\mathbf{F} \circlearrowleft) < 1$$



with
$$\prod_{i>1} p_i > 0$$

$$\rightarrow$$
 $= \emptyset$

$$\lim_{n \to +\infty} 1 - p_n^{\cap O} = 1$$



with
$$\prod_{i\geq 1} p_i > 0$$

$$\lim_{n \to +\infty} p_n^{\text{yes}} = \mathbb{P}(\mathbf{F} \circlearrowleft) < 1$$

$$\lim_{n \to +\infty} 1 - p_n^{\text{no}} = 1$$

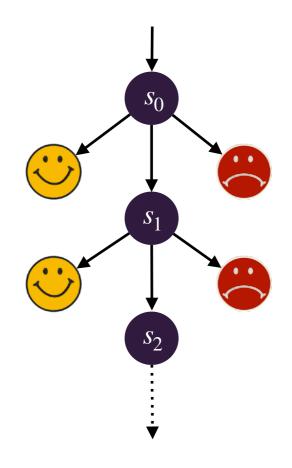
$$\lim_{n \to +\infty} 1 - p_n^{\cap O} = 1$$

The approximation scheme does not converge

Termination of the approx. scheme

Approximation scheme

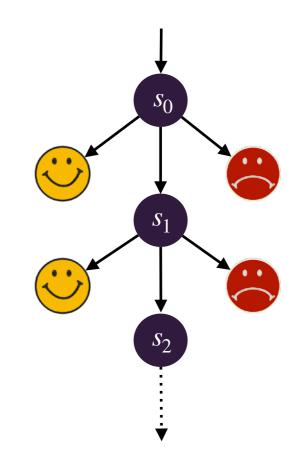
Given
$$\varepsilon > 0$$
:
$$\begin{cases} p_n^{\mathrm{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\mathrm{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \end{cases}$$
 until $p_n^{\mathrm{yes}} + p_n^{\mathrm{no}} \geq 1 - \varepsilon$



Termination of the approx. scheme

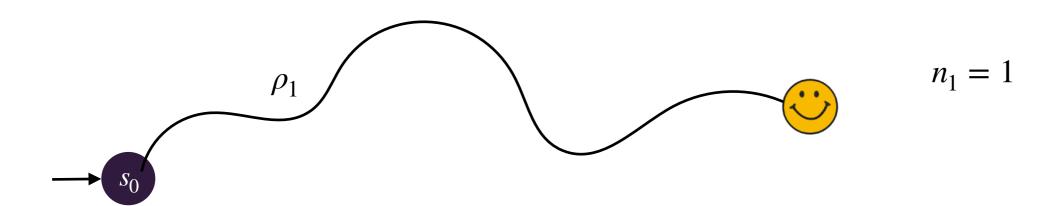
Approximation scheme

Given
$$\varepsilon > 0$$
:
$$\begin{cases} p_n^{\mathrm{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\mathrm{no}} &= \mathbb{P}(\neg \odot \mathbf{U}_{\leq n} \odot) \end{cases}$$
 until $p_n^{\mathrm{yes}} + p_n^{\mathrm{no}} \geq 1 - \varepsilon$

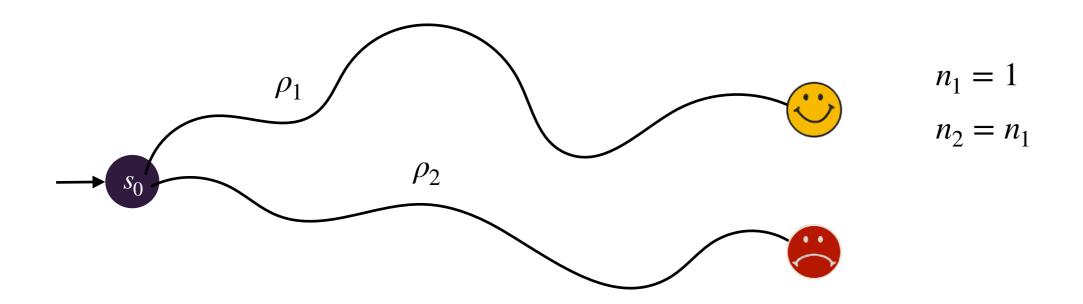


 \mathscr{C} is decisive from s_0 w.r.t. $\stackrel{\smile}{\smile}$ iff the approximation scheme converges

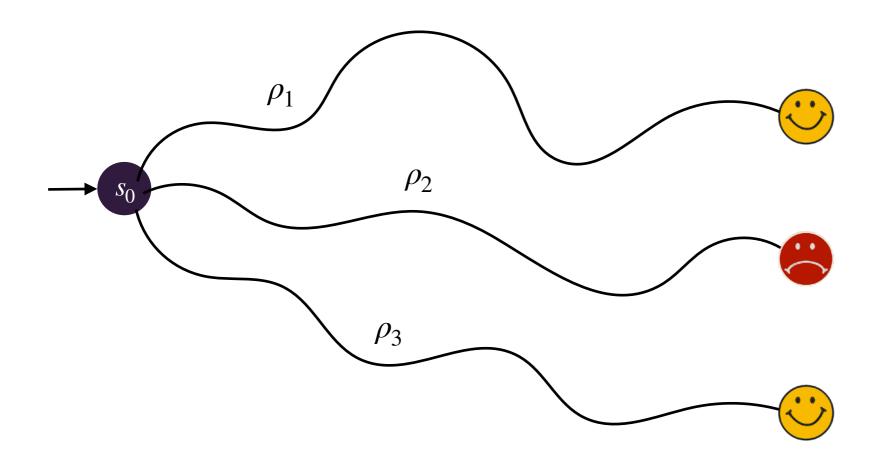
Sample N paths



Sample N paths



Sample N paths

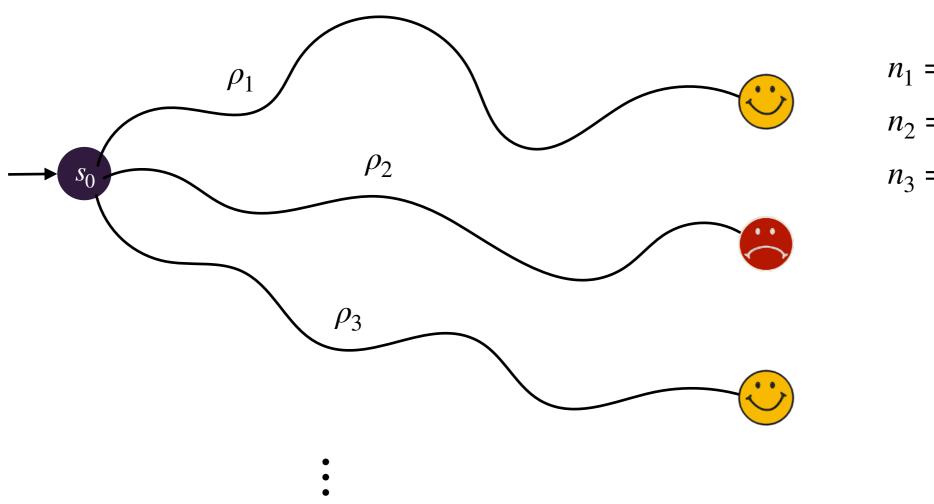


$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

Sample N paths



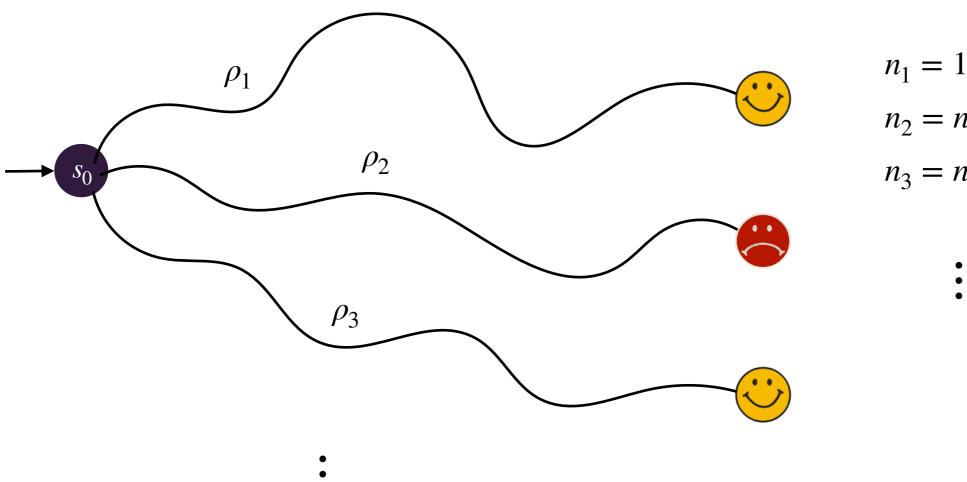
$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

•

Sample N paths



$$n_1 - 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

 $\frac{n_N}{}$ + some confidence interval

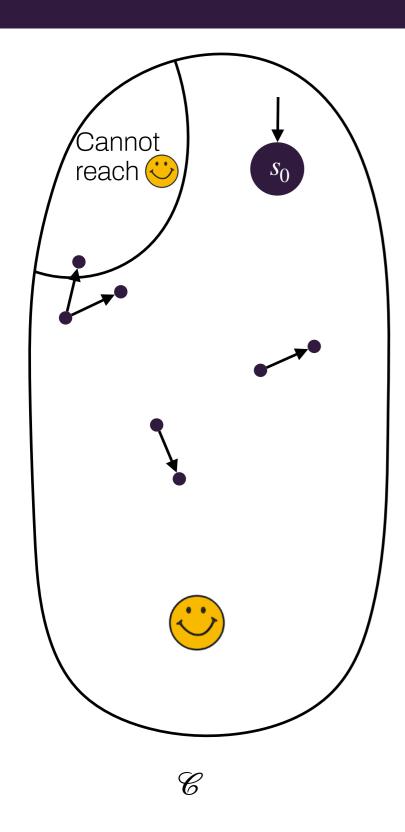
Termination

(To our knowledge, never expressed like this)

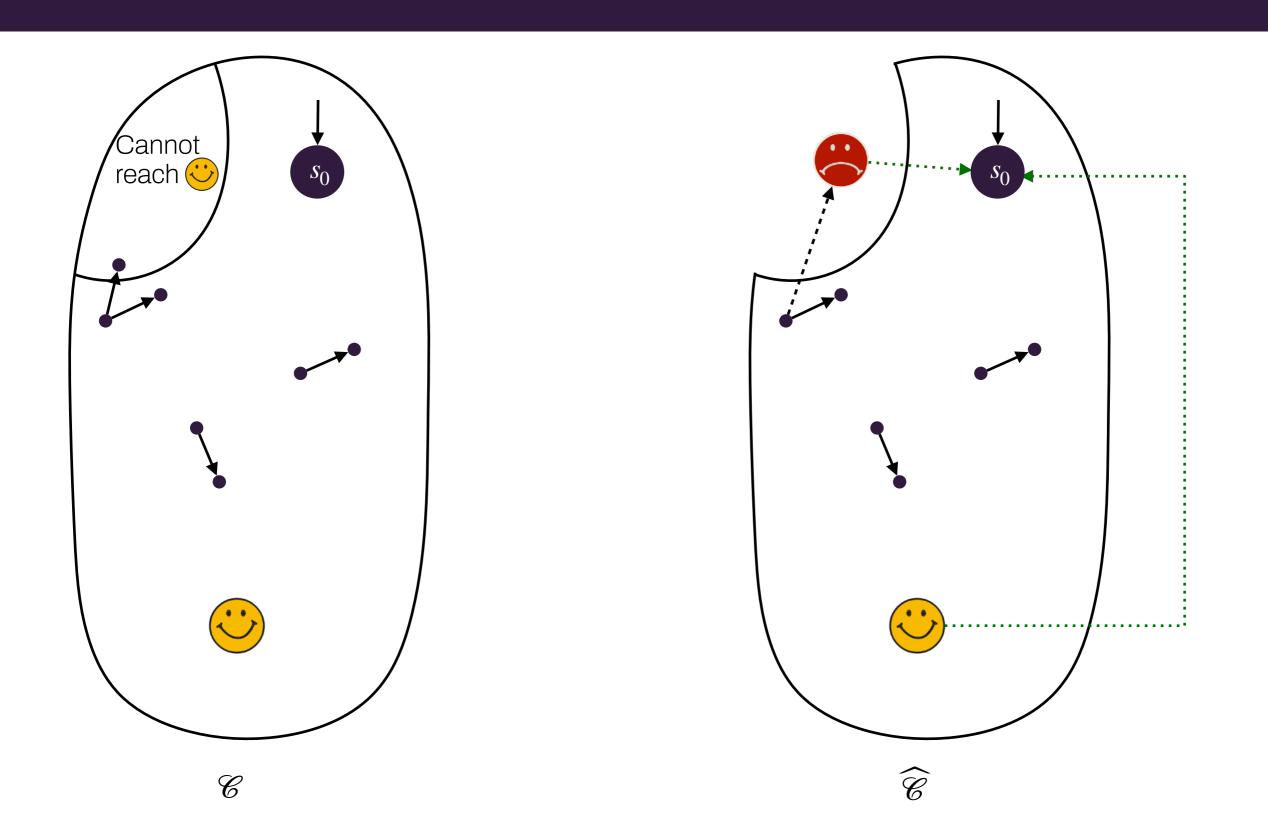
 \mathscr{C} is decisive from s_0 w.r.t. $\stackrel{\smile}{\smile}$ iff

a sampled path starting at s_0 almost-surely hits $\stackrel{ ext{.}}{\bigcirc}$ or $\stackrel{ ext{.}}{\rightleftharpoons}$

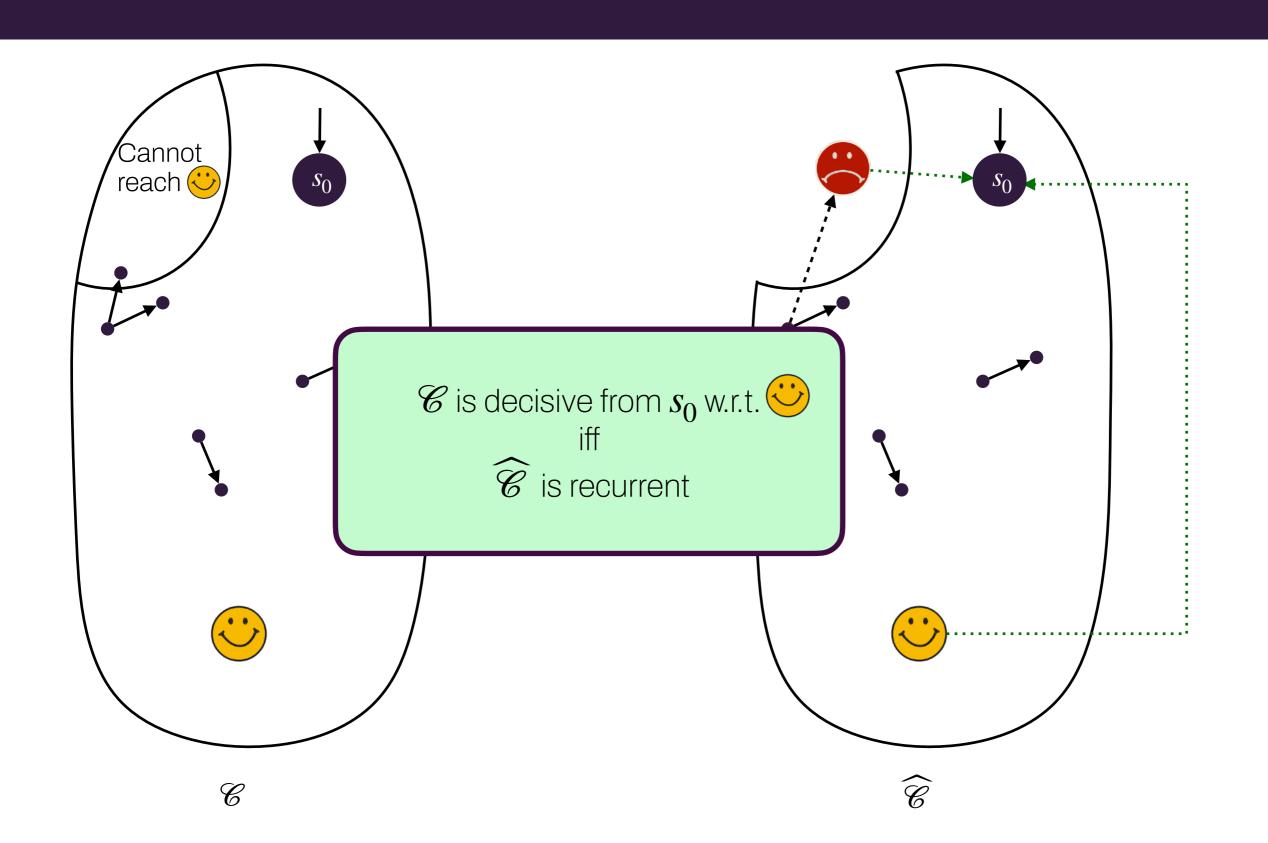
Decisiveness vs recurrence



Decisiveness vs recurrence



Decisiveness vs recurrence



Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s w.r.t. $\stackrel{\smile}{\smile}$

a sampled path starting at s almost-surely hits $\stackrel{\smile}{\smile}$ or $\stackrel{\longleftarrow}{\rightleftharpoons}$

Efficiency of sampling

 $lacksymbol{\mathscr{C}}$ is decisive from s_0 w.r.t. \bigcirc iff $\widehat{\mathscr{C}}$ is recurrent

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s w.r.t. $\stackrel{\smile}{\smile}$

a sampled path starting at s almost-surely hits $\stackrel{\smile}{\smile}$ or $\stackrel{\smile}{\rightleftharpoons}$

Efficiency of sampling

- lacktriangledown \mathcal{C} is decisive from s_0 w.r.t. \bigcirc iff $\widehat{\mathcal{C}}$ is recurrent
- lacktriangledown If $\widehat{\mathscr{C}}$ is positive recurrent, then sampling a single path in \mathscr{C} will take finite time

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s w.r.t. $\stackrel{\smile}{\smile}$

a sampled path starting at s almost-surely hits $\stackrel{\smile}{\smile}$

Efficiency of sampling

- $lacksymbol{\mathscr{C}}$ is decisive from s_0 w.r.t. \bigcirc iff $\widehat{\mathscr{C}}$ is recurrent
- lacktriangledown If $\widehat{\mathscr{C}}$ is positive recurrent, then sampling a single path in \mathscr{C} will take finite time
- \blacktriangleright If $\widehat{\mathscr{C}}$ is null recurrent, then sampling a single path in \mathscr{C} might take an arbitrary time

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s w.r.t. $\stackrel{\smile}{\smile}$

a sampled path starting at s almost-surely hits $\stackrel{\smile}{\smile}$

Efficiency of sampling

The time to sample even increases/diverges!

- $lacksymbol{\mathscr{C}}$ is decisive from s_0 w.r.t. \bigcirc iff $\widehat{\mathscr{C}}$ is recurrent
- lacktriangledown If $\widehat{\mathscr{C}}$ is positive recurrent, then sampling a single path in \mathscr{C} will take finite time
- lacktriangledown If $\widehat{\mathscr{C}}$ is null recurrent, then sampling a single path in \mathscr{C} might take an arbitrary time

Hoeffding's inequalities

Let
$$\epsilon, \delta > 0$$
, let $N \geq \frac{8}{\epsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Hoeffding's inequalities

Empirical average

Let
$$\epsilon, \delta > 0$$
, let $N \geq \frac{8}{\epsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Hoeffding's inequalities

Let
$$\epsilon, \delta > 0$$
, let $N \geq \frac{8}{\epsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

- \blacktriangleright ϵ : precision
- $oldsymbol{\delta}$: confidence value

Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

- \blacktriangleright ϵ : precision
- $oldsymbol{\delta}$: confidence value

$$\left[\frac{n_N}{N} - \frac{\varepsilon}{2}; \frac{n_N}{N} + \frac{\varepsilon}{2} \right] : \text{confidence interval}$$

Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

Fix two parameters, the third one follows

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

- \blacktriangleright ϵ : precision
- $oldsymbol{\delta}$: confidence value

$$\left[\frac{n_N}{N} - \frac{\varepsilon}{2}; \frac{n_N}{N} + \frac{\varepsilon}{2} \right] : \text{confidence interval}$$

A slightly more general setting

- ullet Given $L:S^+ o \mathbb{R}$, the $\begin{center} ullet$ -function $f_{L,ullet}$ is $\mathbf{1}_{\mathbf{F}^{ullet}}\cdot L$
- We are interested in evaluating the quantity $\mathbb{E}(f_{L,\odot})$
- $\text{If } L=\mathbf{1}_{\mathbf{F}^{\odot}} \text{, then } \mathbb{E}(f_{L, \overset{\circ}{\cup}})=\mathbb{P}(\mathbf{F}\overset{\circ}{\cup})$

A slightly more general setting

- ullet Given $L:S^+ o \mathbb{R}$, the $\begin{center} ullet$ -function $f_{L,oldsymbol{\odot}}$ is $\mathbf{1}_{\mathbf{F}igotimes}\cdot L$
- We are interested in evaluating the quantity $\mathbb{E}(f_{L,\odot})$
- $\text{If } L=\mathbf{1}_{\mathbf{F}^{\circlearrowright}} \text{, then } \mathbb{E}(f_{L, \circlearrowright})=\mathbb{P}(\mathbf{F}^{\circlearrowleft})$

The two previous approaches extend under the same conditions to \emph{B} -bounded $\ \odot$ -functions

A slightly more general setting

- lacksquare Given $L:S^+
 ightarrow \mathbb{R}$, the $\begin{centure} lacksquare \end{centure}$ -function $f_{L, lacksquare \end{centure}}$ is $\mathbf{1}_{\mathbf{F} lacksquare \end{centure}} \cdot L$
- We are interested in evaluating the quantity $\mathbb{E}(f_{L,\odot})$
- $\text{If } L=\mathbf{1}_{\mathbf{F}^{\odot}} \text{, then } \mathbb{E}(f_{L, {\color{red} \circ}})=\mathbb{P}(\mathbf{F}^{\color{red} \circ})$

The two previous approaches extend under the same conditions to \emph{B} -bounded $\ \odot$ -functions

Empirical estimation

Let
$$\epsilon, \delta > 0$$
 s.t. $N \ge \frac{8B^2}{\epsilon^2} \log\left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{f_N}{N} - \mathbb{E}(f_{L, 0})\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

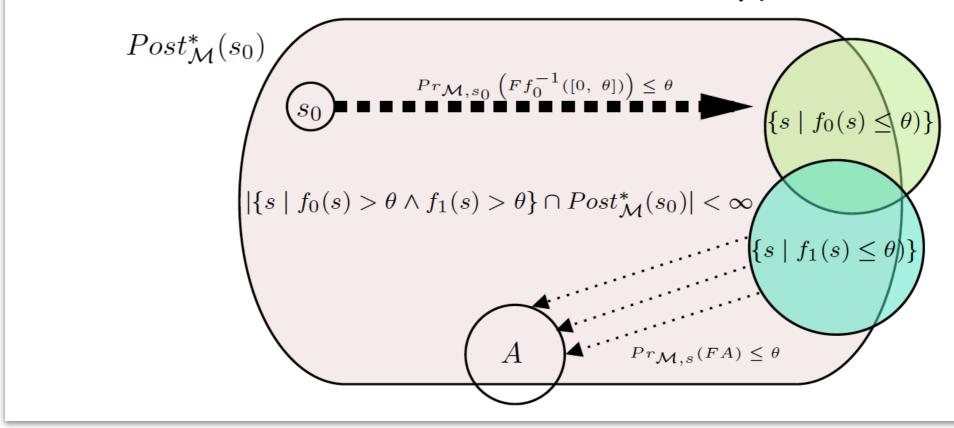
What can we do for non-decisive Markov chains??

Another numerical generic approach

Divergent Markov Chains

A Markov chain \mathcal{M} is divergent w.r.t. s_0 and A if there exist two computable functions f_0 and f_1 from S to $\mathbb{R}_{>0}$ such that:

- For all $0 < \theta < 1$, $\mathbf{Pr}_{\mathcal{M},s_0}(\mathbf{F}f_0^{-1}([0,\theta])) \leq \theta$;
- ② For all $s \in S$, $\mathbf{Pr}_{\mathcal{M},s}(\mathbf{F}A) \leq f_1(s)$;
- \bullet For all $0 < \theta < 1$, $\{s \mid f_0(s) > \theta \land f_1(s) > \theta\} \cap Post_{\mathcal{M}}^*(s_0)$ is finite.

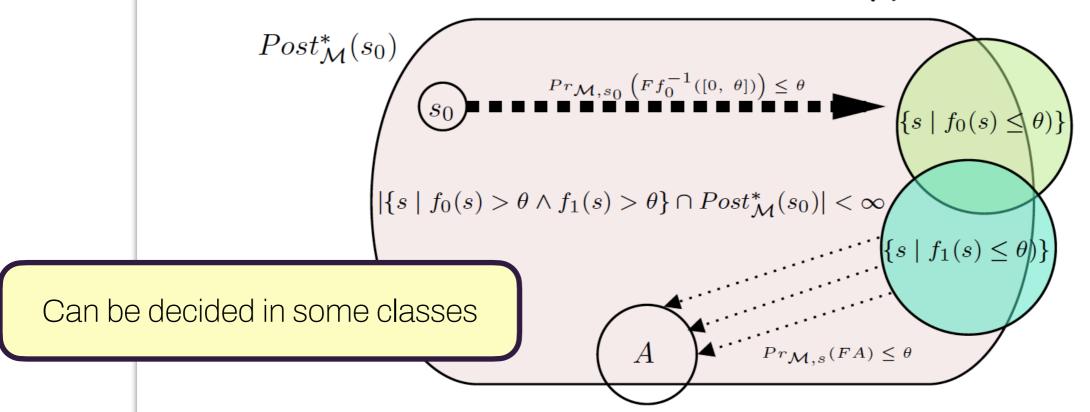


Another numerical generic approach

Divergent Markov Chains

A Markov chain \mathcal{M} is *divergent* w.r.t. s_0 and A if there exist two computable functions f_0 and f_1 from S to $\mathbb{R}_{>0}$ such that:

- For all $0 < \theta < 1$, $\mathbf{Pr}_{\mathcal{M},s_0}(\mathbf{F}f_0^{-1}([0,\theta])) \le \theta$;
- ② For all $s \in S$, $\mathbf{Pr}_{\mathcal{M},s}(\mathbf{F}A) \leq f_1(s)$;
- \bullet For all $0 < \theta < 1$, $\{s \mid f_0(s) > \theta \land f_1(s) > \theta\} \cap Post_{\mathcal{M}}^*(s_0)$ is finite.



• Issue: rare events in $\mathscr C$

Rare-Event Problem for Statistical Model Checking

Problem Statement

- We want to estimate the probability of a rare event e occurring with probability close to 10^{-15} .
- We want a confidence level of 0.99.
- We are able to compute 10⁹ trajectories.

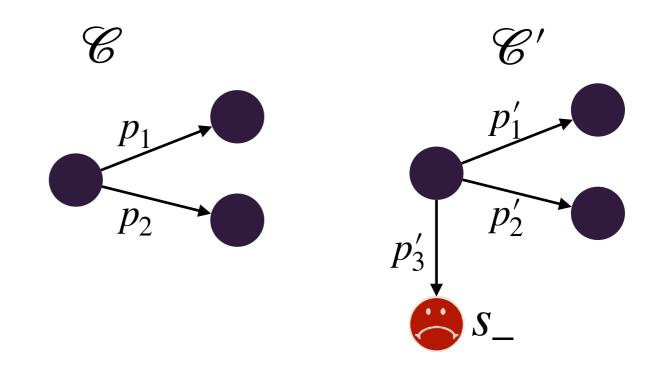
Possible Outcomes

Number of

occurrences of e Probability Confidence interval $0 \approx 1-10^{-6}$ $[0,7.03\cdot 10^{-9}]$ $1 \leq 10^{-6}$ $[6.83\cdot 10^{-10},1.69\cdot 10^{-9}]$ $0 \approx 1-10^{-6}$ $0 \approx 1-10^{-6}$ $0 \approx 1-10^{-10}$ $0 \approx 1-10^{-10}$ $0 \approx 1-10^{-10}$ $0 \approx 1-10^{-10}$

• Issue: rare events in $\mathscr C$

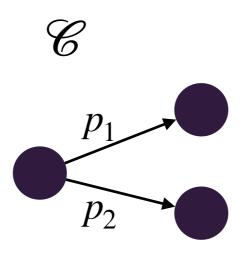
- Issue: rare events in $\mathscr C$
- ightharpoonup Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

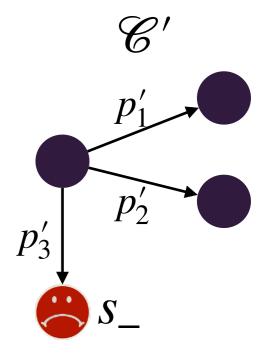


- Issue: rare events in $\mathscr C$
- lacktriangledown Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \\ 0 & \text{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$



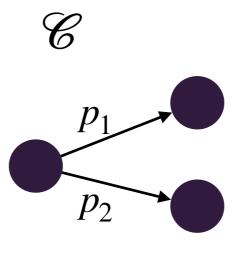


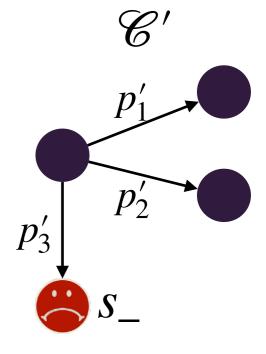
- Issue: rare events in $\mathscr C$
- lacktriangledown Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \\ 0 & \text{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$

$$\mathbb{E}_{\mathscr{C}}(f_{L, \mathfrak{O}}) = \mathbb{E}_{\mathscr{C}'}(f_{L', \mathfrak{O}})$$



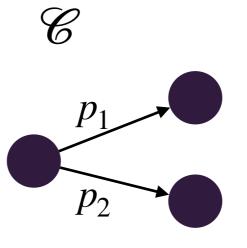


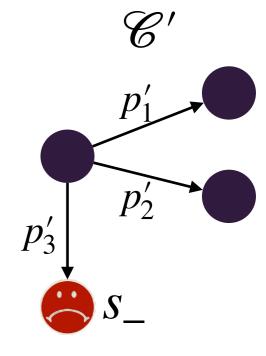
- Issue: rare events in $\mathscr C$
- lacktriangledown Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \\ 0 & \text{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \textcircled{\circ}) = \mathbb{E}_{\mathscr{C}'}(f_{\gamma, \textcircled{\circ}})$$





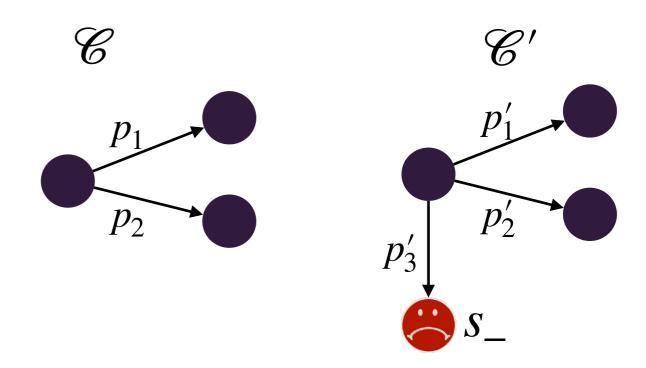
- Issue: rare events in $\operatorname{\mathscr{C}}$
- lacktriangledown Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

Likelihood and biased function

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \\ 0 & ext{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \textcircled{\circ}) = \mathbb{E}_{\mathscr{C}'}(f_{\gamma, \ \textcircled{\circ}})$$

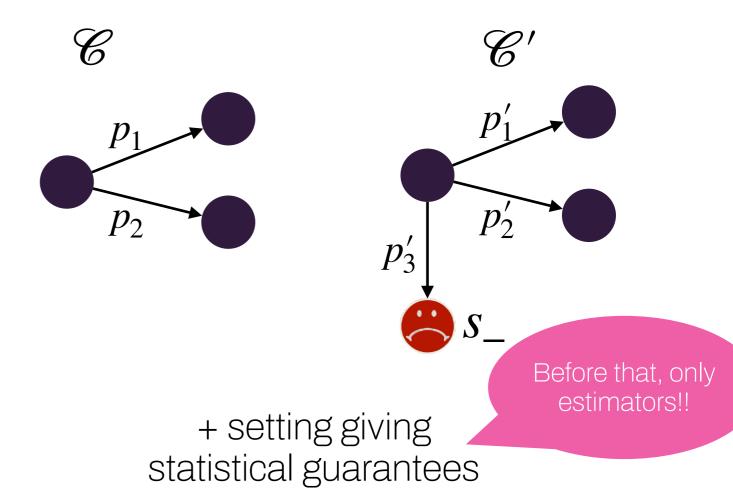


+ setting giving statistical guarantees

- Issue: rare events in $\mathscr C$
- lacktriangledown Idea: analyze a biased Markov chain \mathscr{C}' , which amplifies the « rare » event

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } rac{arphi}{arphi'(
ho)} \ 0 & ext{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \textcircled{\circ}) = \mathbb{E}_{\mathscr{C}'}(f_{\gamma, \textcircled{\circ}})$$

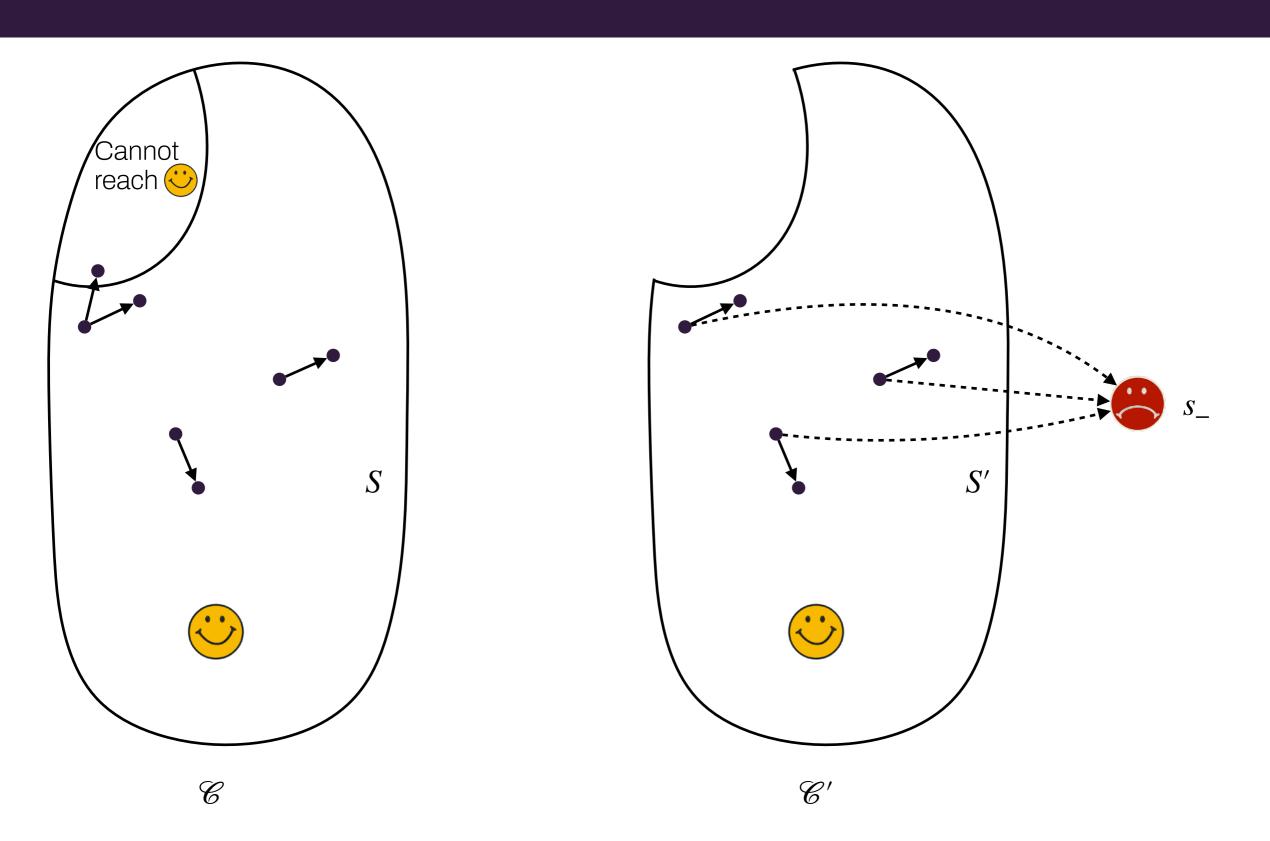


We propose to use the importance sampling approach to analyze some non-decisive DTMCs!

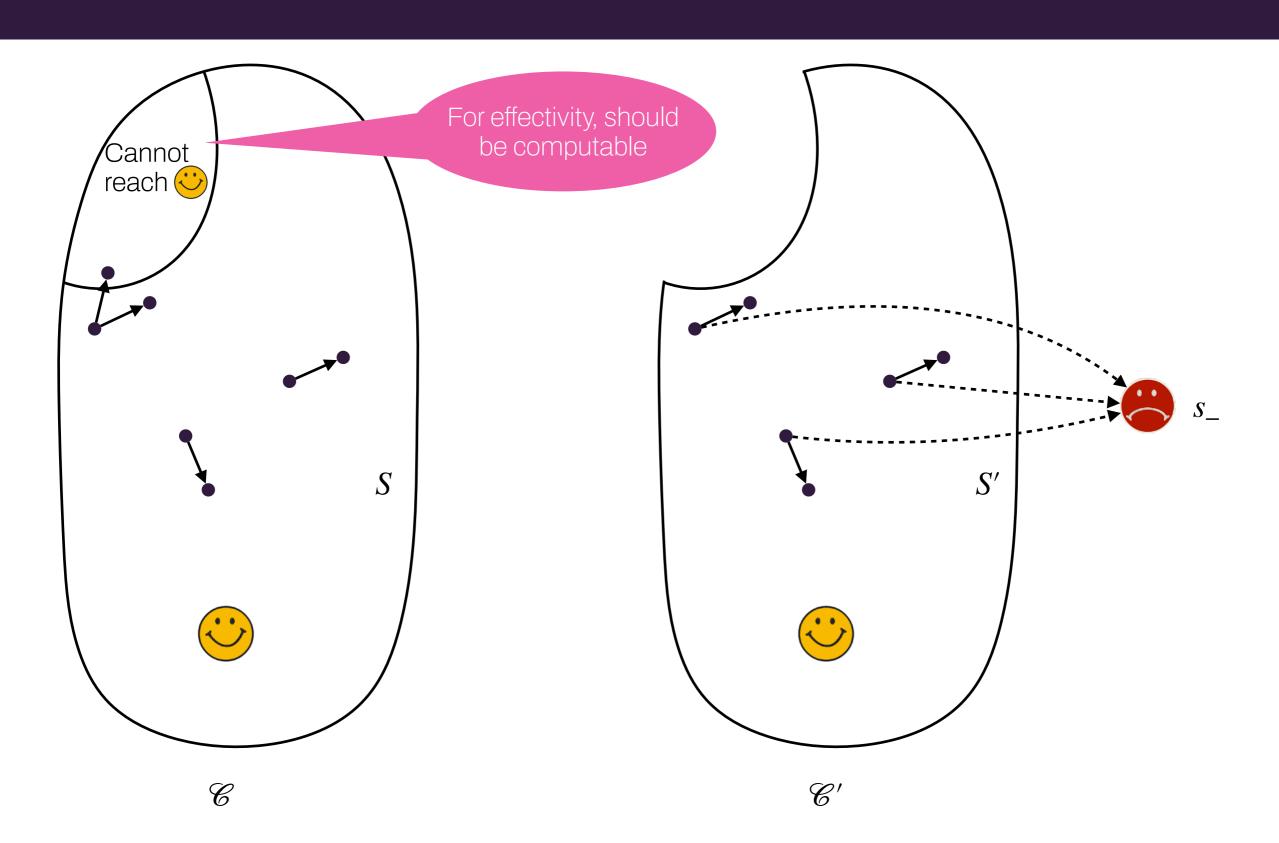
We propose to use the importance sampling approach to analyze some non-decisive DTMCs!

First time that importance sampling is used not to accelerate the analysis, but to enable the analysis

Biased Markov chain



Biased Markov chain



Likelihood and biased function
$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

Likelihood and biased function

Likelihood and biased function
$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \\ 0 & \text{otherwise} \end{cases}$$

$$L' = L \cdot \gamma$$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \ 0 & ext{otherwise} \end{cases}$$
 $L' = L \cdot \gamma$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$
- The two previously described methods (approx and estim via SMC) can be applied to \mathscr{C}' as soon as \mathscr{C}' is decisive w.r.t. $\stackrel{\smile}{\odot}$ from s_0 and L' is (effectively) bounded

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \ 0 & ext{otherwise} \end{cases}$$
 $L' = L \cdot \gamma$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$
- The two previously described methods (approx and estim via SMC) can be applied to \mathscr{C}' as soon as \mathscr{C}' is decisive w.r.t. $\stackrel{\smile}{\odot}$ from s_0 and L' is (effectively) bounded
 - ullet Decisiveness of \mathscr{C}' is required, decisiveness of \mathscr{C} is not

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \\ 0 & ext{otherwise} \end{cases}$$
 $L' = L \cdot \gamma$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$
- The two previously described methods (approx and estim via SMC) can be applied to \mathscr{C}' as soon as \mathscr{C}' is decisive w.r.t. $\stackrel{\smile}{\odot}$ from s_0 and L' is (effectively) bounded
 - Decisiveness of \mathscr{C}' is required, decisiveness of \mathscr{C} is not
 - L' can be unbounded even if L is bounded

$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \ 0 & ext{otherwise} \end{cases}$$
 $L' = L \cdot \gamma$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

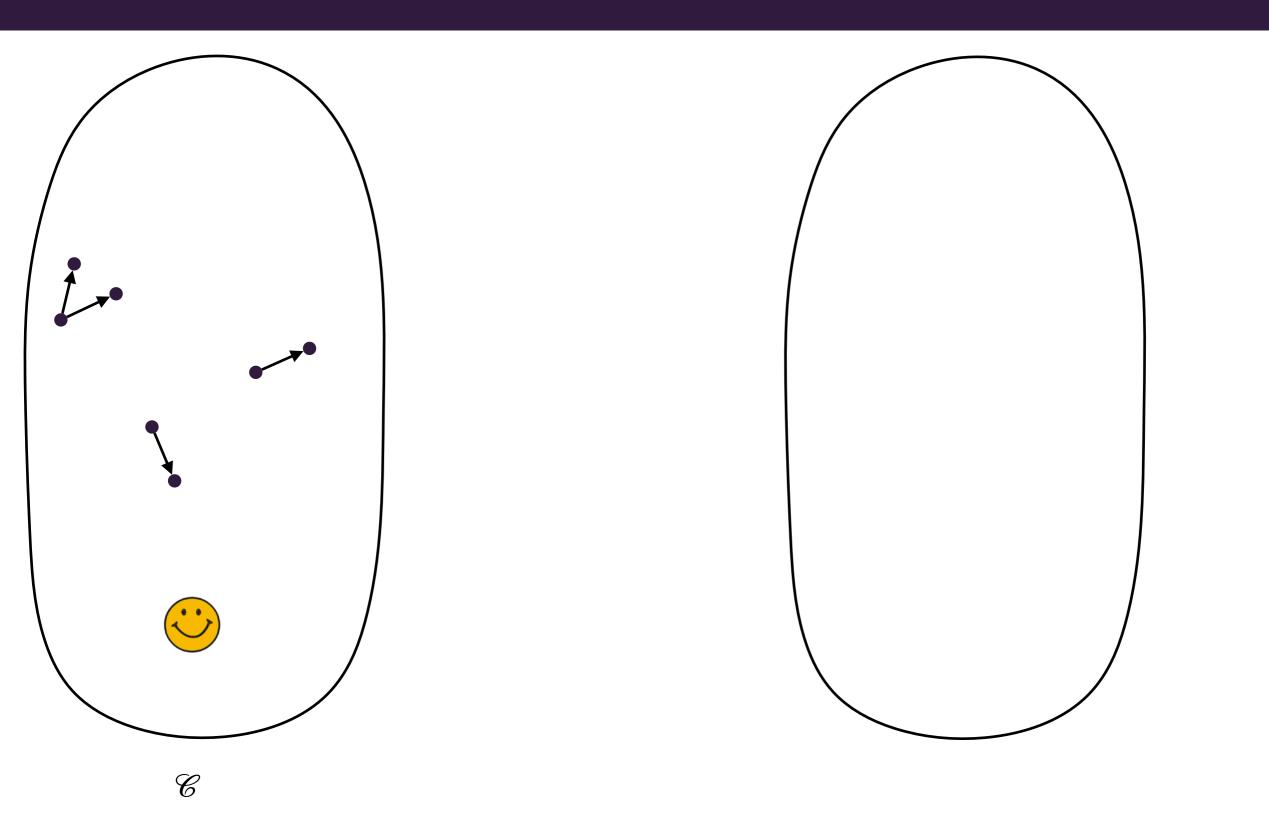
- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$
- The two previously described methods (approx and estim via SMC) can be applied to \mathscr{C}' as soon as \mathscr{C}' is decisive w.r.t. $\stackrel{\smile}{\odot}$ from s_0 and L' is (effectively) bounded
 - Decisiveness of \mathscr{C}' is required, decisiveness of \mathscr{C} is not
 - ullet L' can be unbounded even if L is bounded
- Need of developing methods to ensure nice properties of \mathscr{C}'

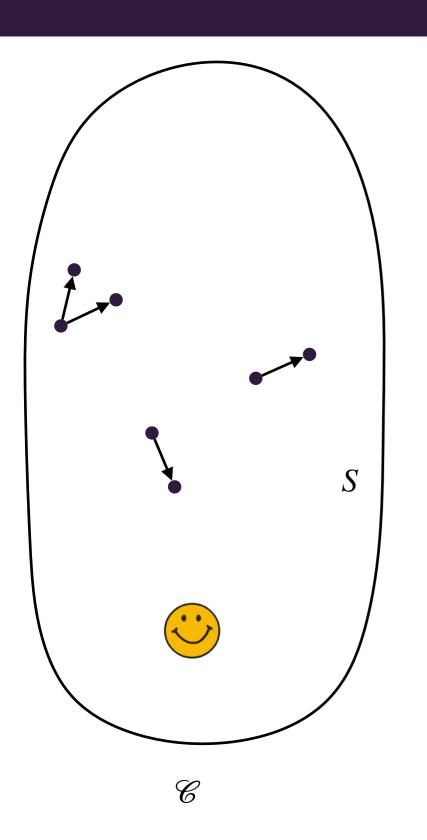
$$\gamma(
ho) = egin{cases} rac{P(
ho)}{P'(
ho)} & ext{if $
ho$ ends in } \circlearrowleft \\ 0 & ext{otherwise} \end{cases}$$
 $L' = L \cdot \gamma$

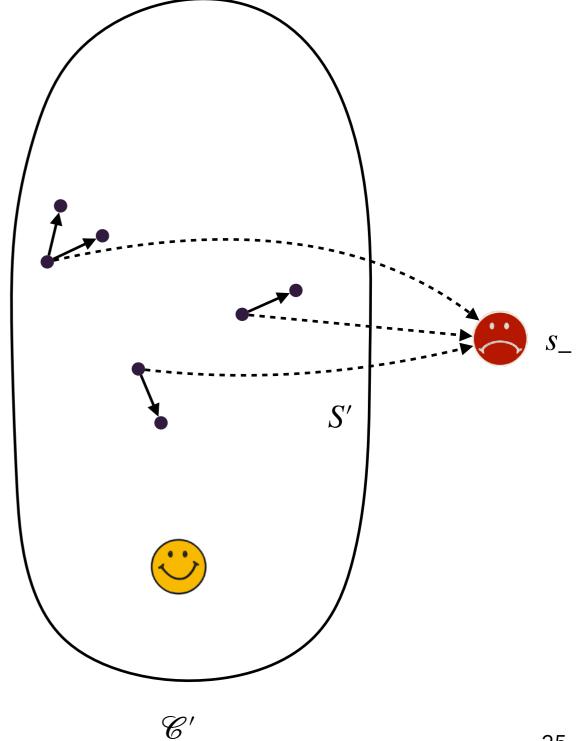
$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

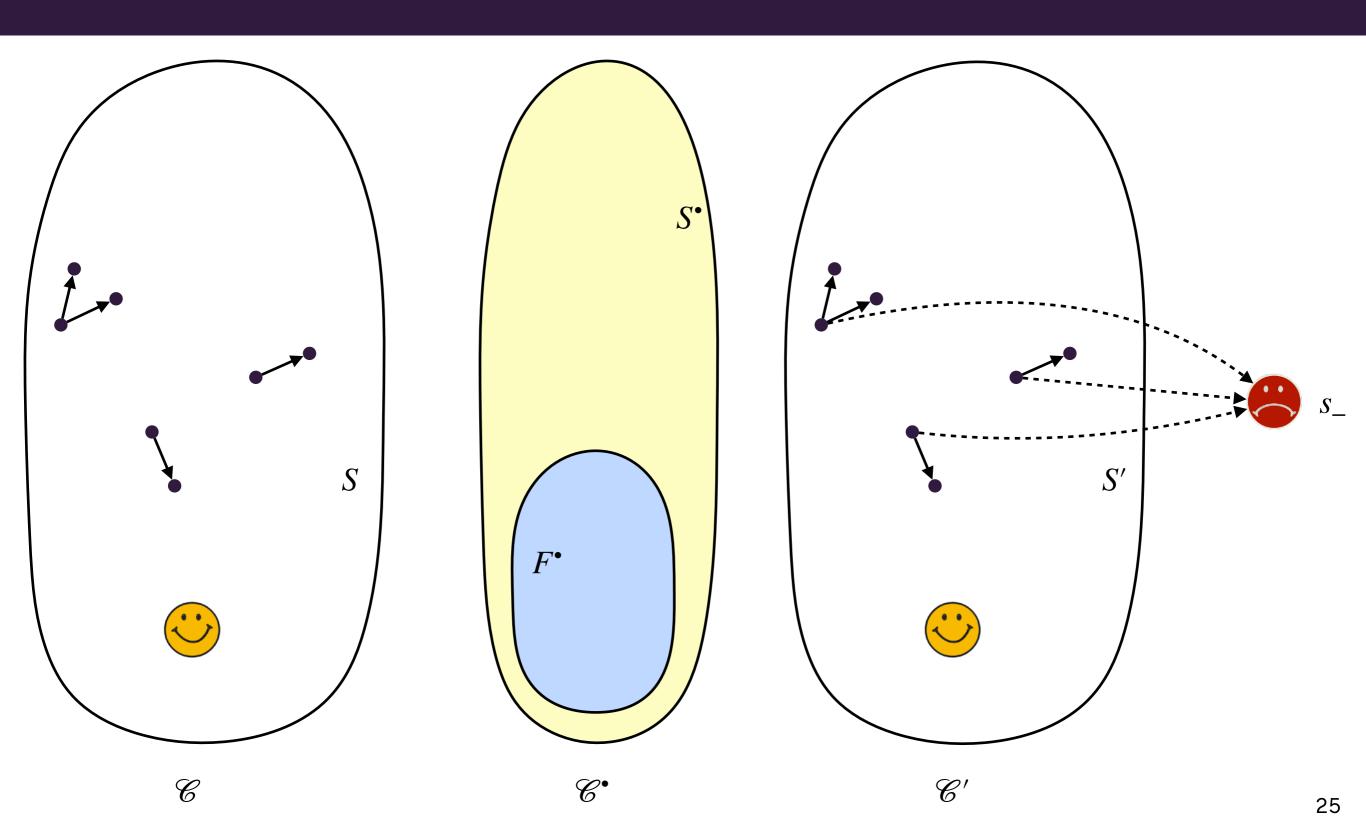
- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$
- The two previously described methods (approx and estim via SMC) can be applied to \mathscr{C}' as soon as \mathscr{C}' is decisive w.r.t. $\stackrel{\smile}{\odot}$ from s_0 and L' is (effectively) bounded
 - Decisiveness of \mathscr{C}' is required, decisiveness of \mathscr{C} is not
 - ullet L' can be unbounded even if L is bounded

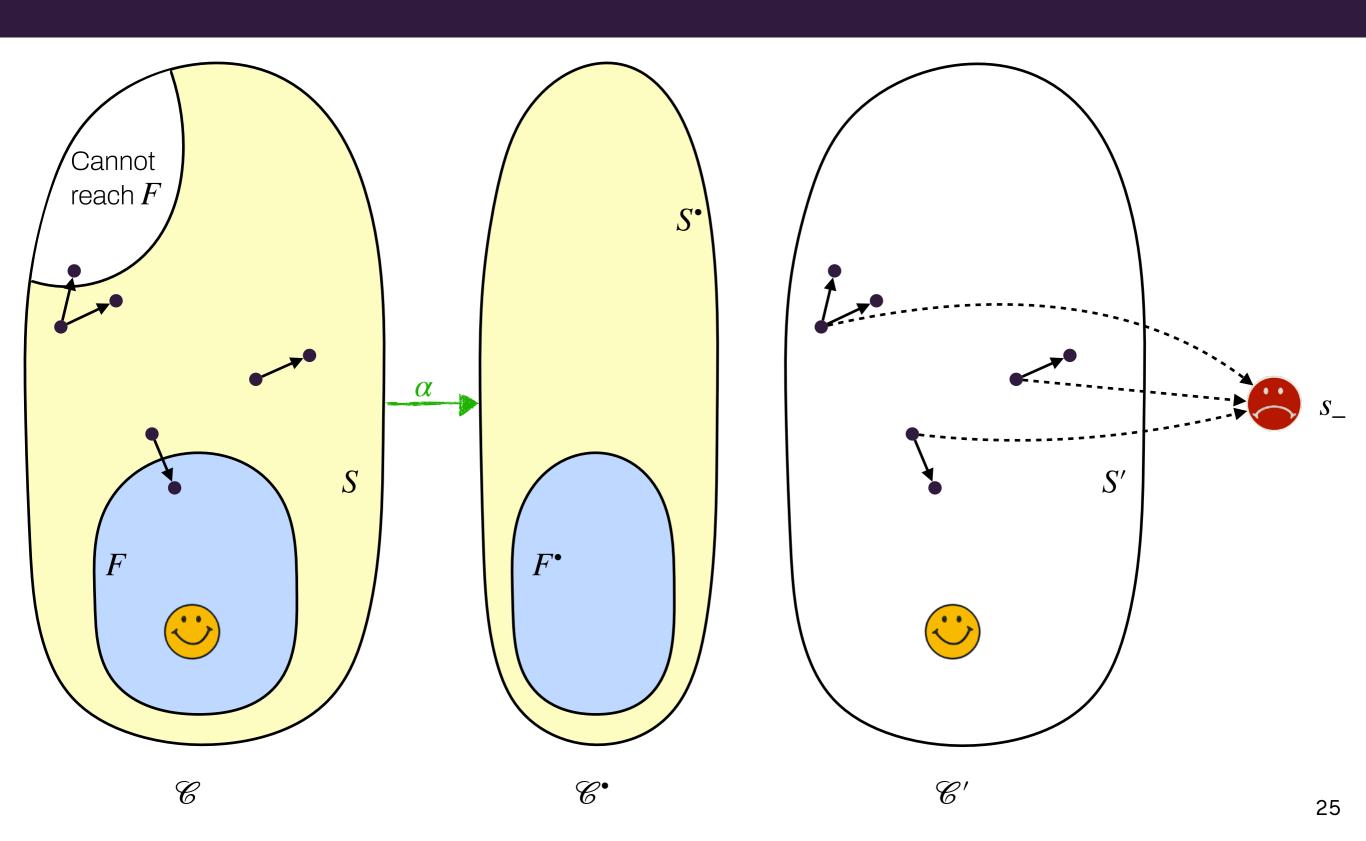
- lacktriangle Need of developing methods to ensure nice properties of \mathscr{C}'
 - [BHP12] for rare events: approach for finite Markov chains via coupling and abstractions with reduced variance

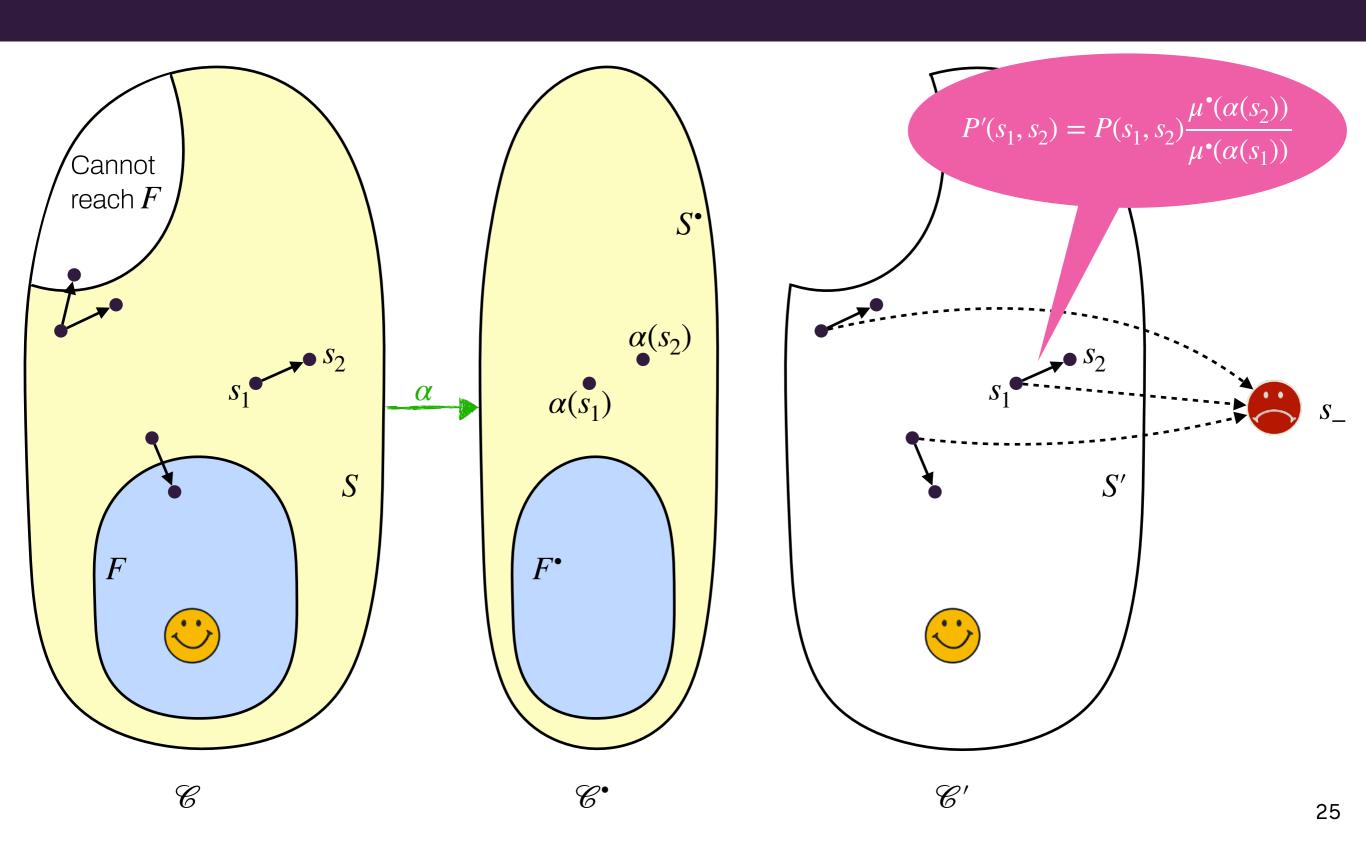








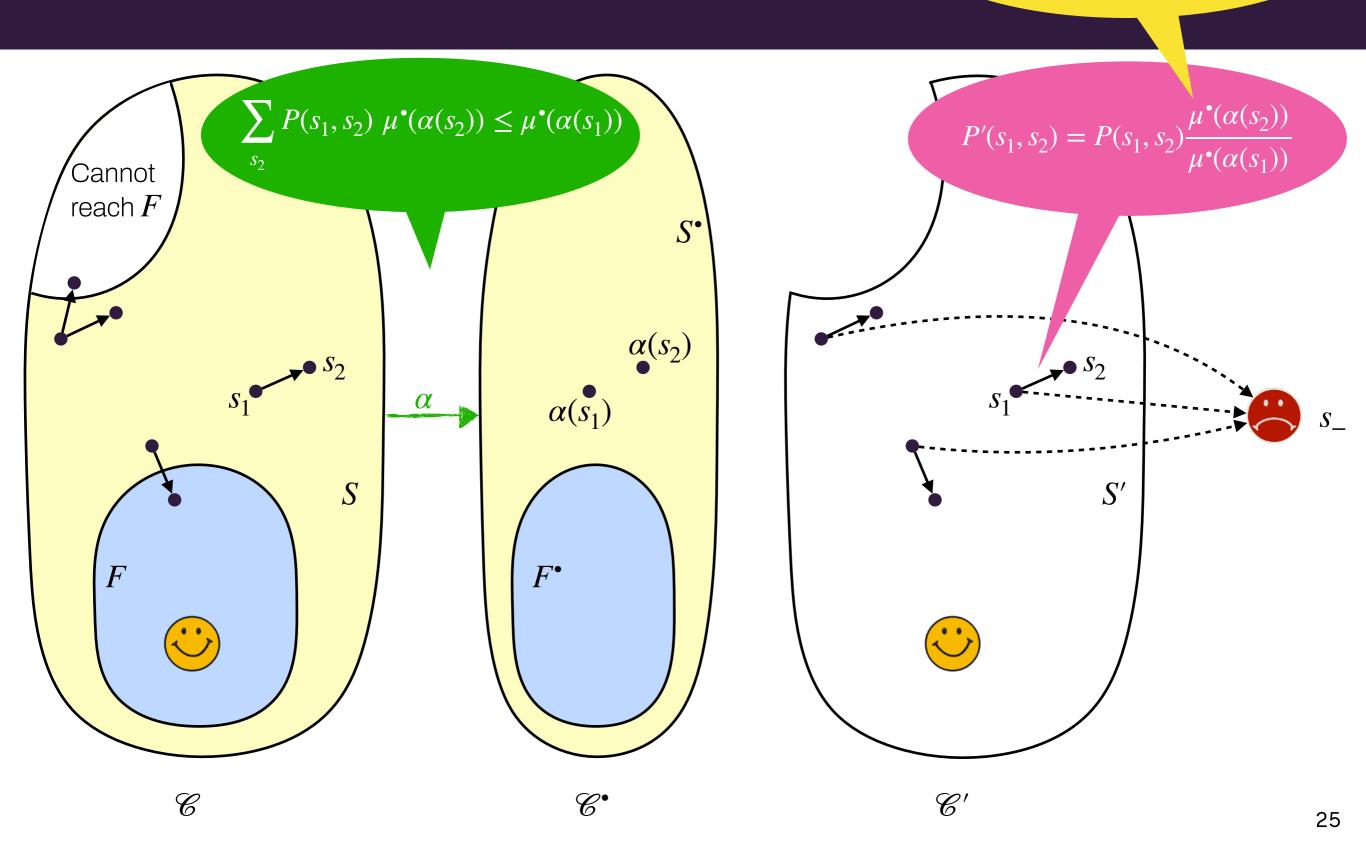




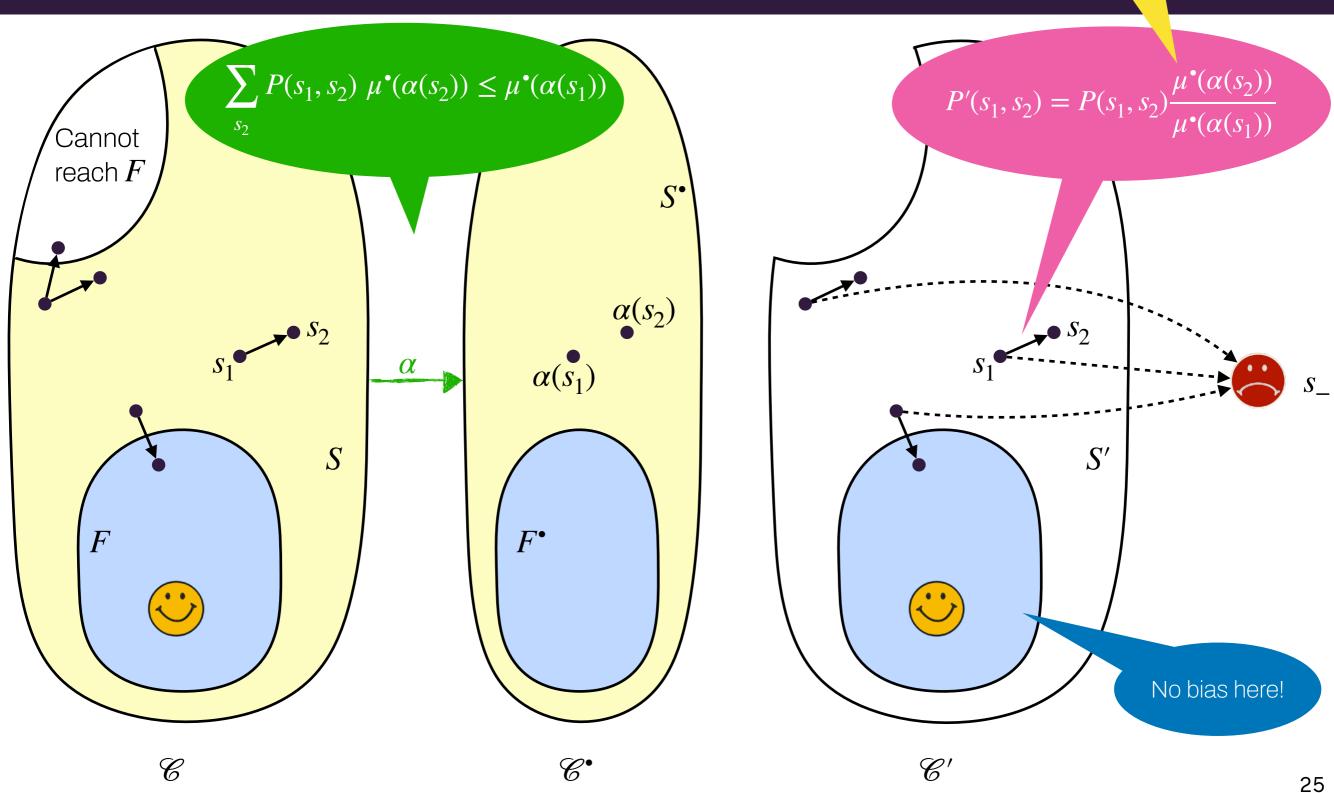
 μ^ullet is the probability to reach F^ullet in \mathscr{C}^ullet



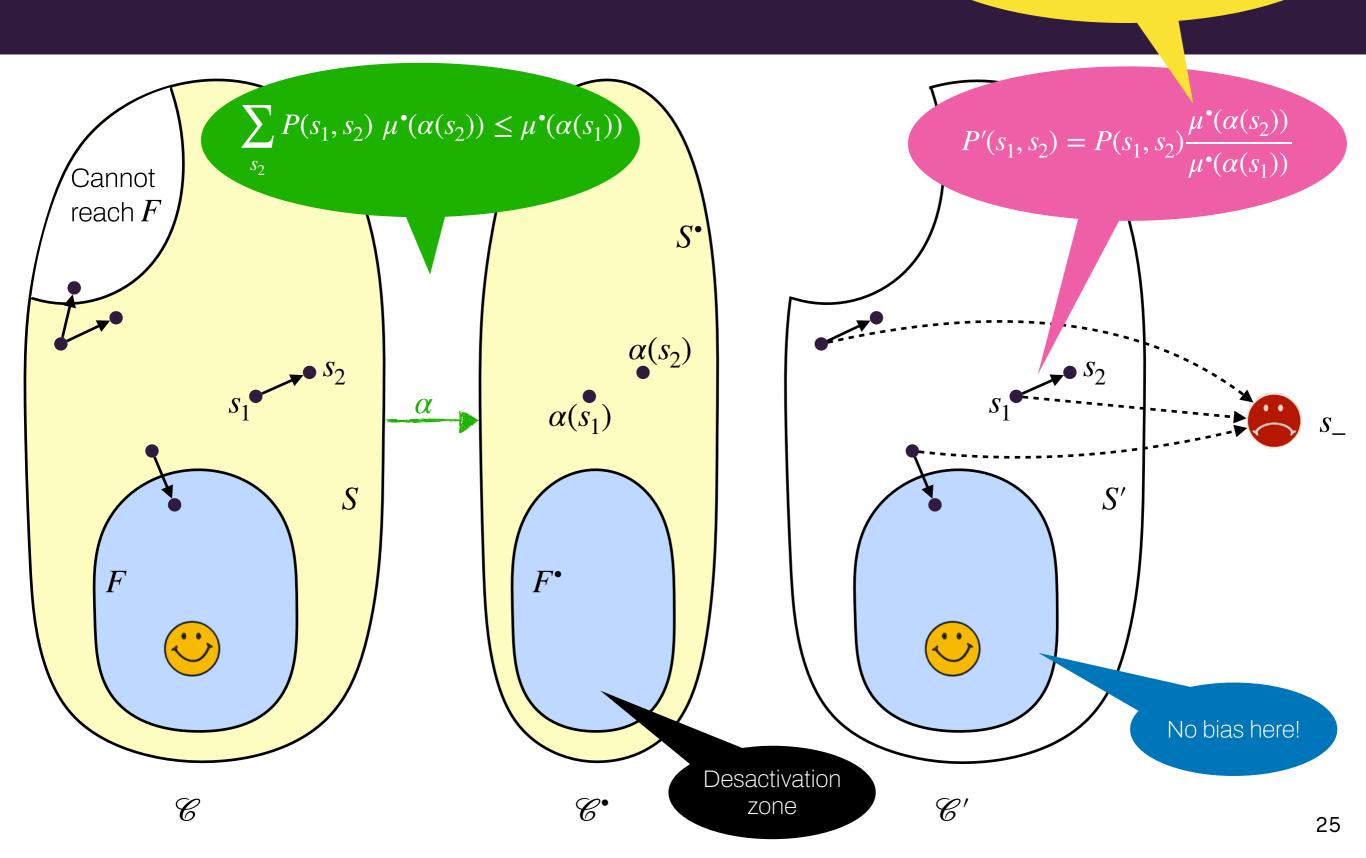
 μ^ullet is the probability to reach F^ullet in \mathscr{C}^ullet



 μ^{ullet} is the probability to reach F^{ullet} in \mathscr{C}^{ullet}



 μ^ullet is the probability to reach F^ullet in \mathscr{C}^ullet



Properties of the approach

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

Properties of the approach

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F}^{\odot}) = \mu^{\bullet} \left(\alpha(s_0) \right) \cdot \mathbb{P}_{\mathscr{C}'}(\mathbf{F}^{\odot})$$

$$L'(\rho) = L(\rho) \cdot \mu^{\bullet} (\alpha(\text{first}(\rho)))$$

$$L'(\rho) = L(\rho) \cdot \mu^{\bullet}(\alpha(\operatorname{first}(\rho)))$$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F}^{\circlearrowright}) = \mu^{\bullet} \left(\alpha(s_0) \right) \cdot \mathbb{P}_{\mathscr{C}'}(\mathbf{F}^{\circlearrowleft})$$

$$L'(\rho) = L(\rho) \cdot \mu^{\bullet} (\alpha(\text{first}(\rho)))$$

If $f_{L, \circ}$ is effectively bounded for paths from s, then $f_{L', \circ}$ is also effectively bounded for paths from s. It is in particular the case when $f_{L, \circ} = \mathbf{1}_{F} \circ$

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F}^{\circlearrowright}) = \mu^{\bullet} \left(\alpha(s_0) \right) \cdot \mathbb{P}_{\mathscr{C}'}(\mathbf{F}^{\circlearrowleft})$$

$$L'(\rho) = L(\rho) \cdot \mu^{\bullet} (\alpha(\text{first}(\rho)))$$

- If $f_{L, \bullet}$ is effectively bounded for paths from s, then $f_{L', \bullet}$ is also effectively bounded for paths from s. It is in particular the case when $f_{L, \bullet} = \mathbf{1}_{F} \bullet$
- We need:

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F}^{\circlearrowleft}) = \mu^{\bullet} \left(\alpha(s_0) \right) \cdot \mathbb{P}_{\mathscr{C}'}(\mathbf{F}^{\circlearrowleft})$$

$$L'(\rho) = L(\rho) \cdot \mu^{\bullet} (\alpha(\text{first}(\rho)))$$

- If $f_{L, \odot}$ is effectively bounded for paths from s, then $f_{L', \odot}$ is also effectively bounded for paths from s. It is in particular the case when $f_{L, \odot} = \mathbf{1}_{F}$
- We need:
 - ullet To ensure the decisiveness of \mathscr{C}'

$$\mathbb{E}_{\mathscr{C}}(f_{L,\bullet}) = \mathbb{E}_{\mathscr{C}'}(f_{L',\bullet})$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F}^{\odot}) = \mu^{\bullet} \left(\alpha(s_0) \right) \cdot \mathbb{P}_{\mathscr{C}'}(\mathbf{F}^{\odot})$$

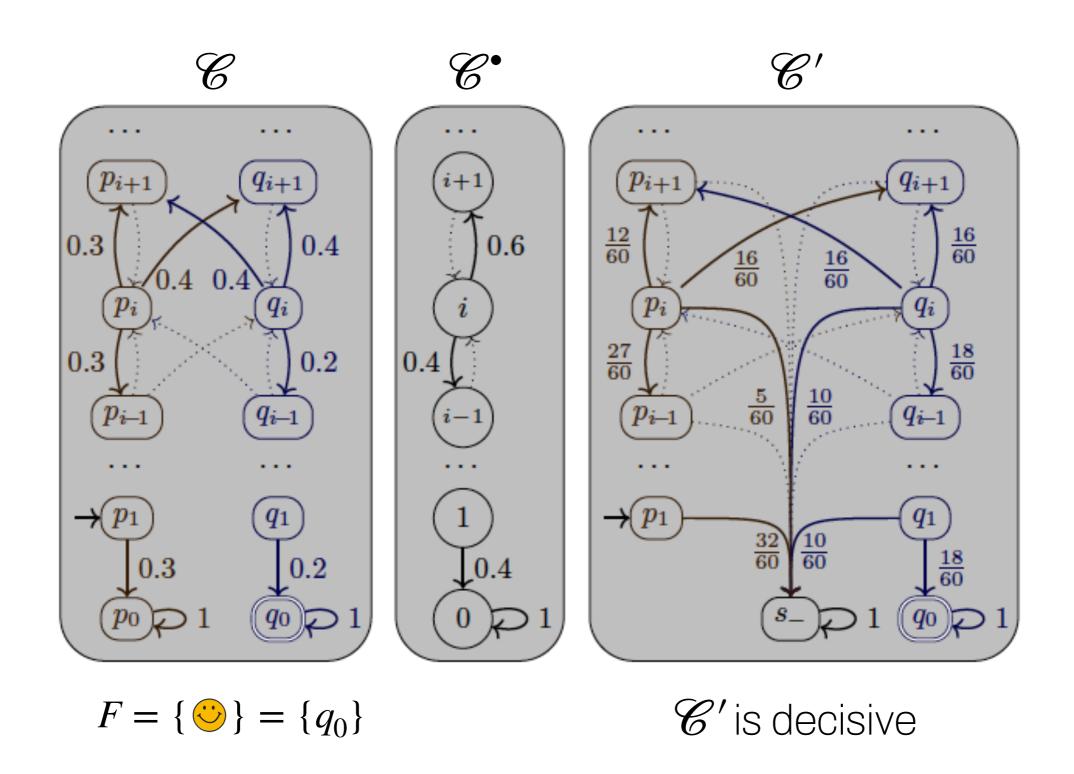
$$L'(\rho) = L(\rho) \cdot \mu^{\bullet} (\alpha(\text{first}(\rho)))$$

- If $f_{L, \circ}$ is effectively bounded for paths from s, then $f_{L', \circ}$ is also effectively bounded for paths from s. It is in particular the case when $f_{L, \circ} = \mathbf{1}_{F} \circ$
- We need:
 - To ensure the decisiveness of \mathscr{C}'
 - To compute $\mu^{\bullet}(\cdot)$ (useful in two places: to sample paths and to compute the final value when hitting \bigcirc)

Role of F

- Standard approach for importance sampling: no set F (F coincides with \bigcirc)
- Will be useful to adjust the properties satisfied by the abstraction to be correct
 - Requirement will be « outside F »
 - For instance, congestion of systems

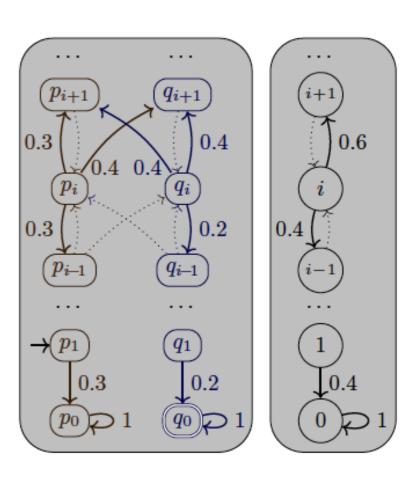
Example



- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} : \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda : S \to \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite

- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} : \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda : S \to \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter p

- ▶ Model = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda:S\to\mathbb{N}$ s.t.
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter p



Theorem

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume there is N_0 s.t. $\frac{1}{2} N_0\}$. Then:

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

- $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. \begin{center}

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

- $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\cup{\psi}$
- The expected time to sample an execution is finite

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\begin{center} lacktriangle$
- The expected time to sample an execution is finite

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 \blacktriangleright \mathscr{C}_p^{ullet} is an abstraction for \mathscr{C}

- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\begin{center} lacktriangle$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\overleftrightarrow{f ullet}$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function \mathscr{L} s.t. for every $s \notin A$, $\mathscr{L}(s) \sum_{s'} P(s,s') \mathscr{L}(s') \geq \varepsilon$, then for all $s \notin A$, the expected timed to A is finite, implying

that A is an attractor

Reached almostsurely

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\overleftrightarrow{f ullet}$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function \mathscr{L} s.t. for every $s \notin A$, $\mathscr{L}(s) \sum_{s'} P(s,s') \mathscr{L}(s') \geq \varepsilon$, then for all $s \notin A$, the expected timed to A is finite, implying

that A is an attractor

Reached almostsurely

lacksquare Apply this theorem to \mathscr{C}'

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

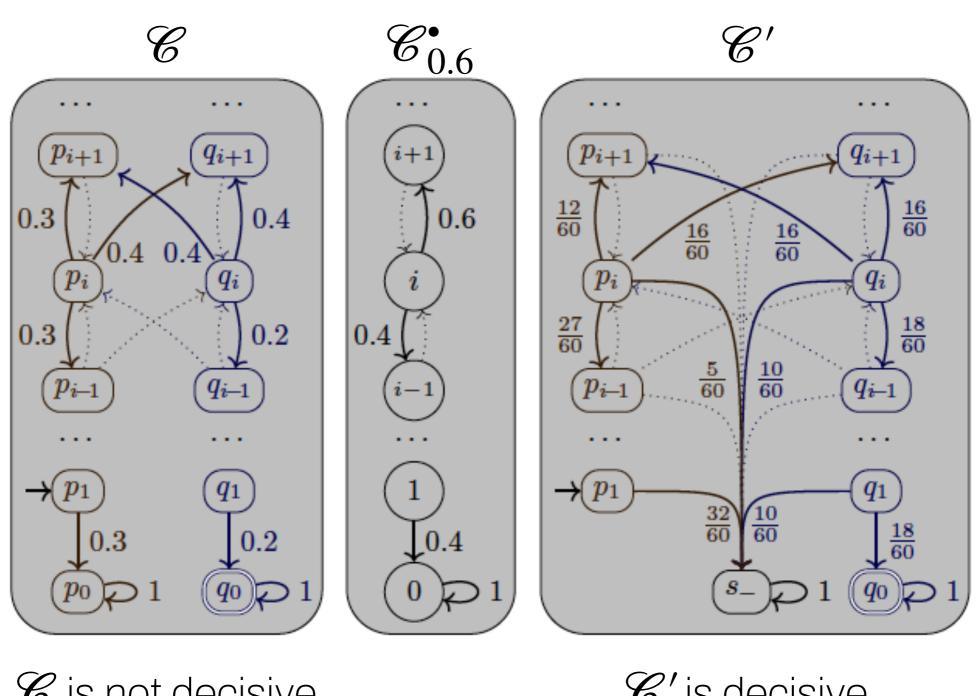
- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\overleftrightarrow{f ullet}$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function \mathscr{L} s.t. for every $s \not\in A$, $\mathscr{L}(s) \sum P(s,s')\mathscr{L}(s') \geq \varepsilon$, then for all $s \not\in A$, the expected timed to A is finite, implying

that A is an attractor

Reached almostsurely + generalization (written by Serge yesterday)

Apply this theorem to \mathscr{C}'

Example



& is not decisive

 \mathscr{C}' is decisive

Automaton with a stack

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t
 - Polynomial weight: W(t, w) is a polynomial in |w|

- Automaton with a stack
- Transition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t
 - Polynomial weight: W(t, w) is a polynomial in |w|

Analysis can be done using the first-order theory of the reals

- Automaton with a stack
- Fransition rules of the type $q \xrightarrow{?a!w} q'$ with $a \in \Sigma$ and $w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t
 - Polynomial weight: W(t,w) is a polynomial in $\lceil w \rceil$

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

Analysis can be done using the first-order theory of the reals

- Automaton with a stack
- $\qquad \text{Transition rules of the type } q \xrightarrow{?a!w} q' \text{ with } a \in \Sigma \text{ and } w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t
 - Polynomial weight: W(t,w) is a polynomial in $\lceil w \rceil$

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

Analysis can be done using the first-order theory of the reals

Can be seen as a layered Markov chain, using the length of the stack content

- Automaton with a stack
- $\qquad \text{Transition rules of the type } q \xrightarrow{?a!w} q' \text{ with } a \in \Sigma \text{ and } w \in \Sigma^{\leq 2}$
- Probabilities given by weights
 - In general: W(t, w) with t a transition and $w \in \Sigma^*$ a stack content
 - [EKM06]: W only depends on t
 - Polynomial weight: W(t,w) is a polynomial in $\lceil w \rceil$

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

Analysis can be done using the first-order theory of the reals

- Can be seen as a layered Markov chain, using the length of the stack content
- Local conditions on transition rules to ensure the hypotheses of the theorem

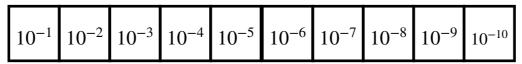
 Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking

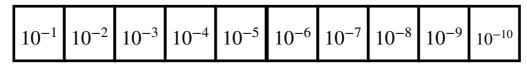
- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking
- Add the approximation algorithm, as efficiently as we could think of

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking
- Add the approximation algorithm, as efficiently as we could think of
 - Front of visited states, select the most probable one to pursue

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking
- Add the approximation algorithm, as efficiently as we could think of
 - Front of visited states, select the most probable one to pursue
 - Efficient implementation of small numbers

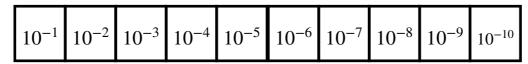


- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking
- Add the approximation algorithm, as efficiently as we could think of
 - Front of visited states, select the most probable one to pursue
 - Efficient implementation of small numbers



 Data structures: a hash table (to know the states which are present) and a maxheap to select the most probable state

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Cosmos: essentially implements statistical model checking
- Add the approximation algorithm, as efficiently as we could think of
 - Front of visited states, select the most probable one to pursue
 - Efficient implementation of small numbers



- Data structures: a hash table (to know the states which are present) and a maxheap to select the most probable state
- Some experiments have been done

 \blacktriangleright If \mathscr{C} is decisive

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
- If \mathscr{C} is p-divergent

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

If \mathscr{C} is p-divergent

• Compute a corresponding N_0

The larger is p, the larger is $N_{
m 0}$

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

The larger is p, the larger is $N_{
m 0}$

- If \mathscr{C} is p-divergent
 - Compute a corresponding N_0
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle\bullet}$ with desactivation zone $F^{\scriptscriptstyle\bullet}=[0;N_0]$

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

The larger is p, the larger is $N_{
m 0}$

- If \mathscr{C} is p-divergent
 - Compute a corresponding $N_{\!0}$
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle ullet}$ with desactivation zone $F^{\scriptscriptstyle ullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

- If \mathscr{C} is decisive
 - ullet Apply Approx and Estim on $\operatorname{\mathscr{C}}$
- If \mathscr{C} is p-divergent
 - Compute a corresponding N_0
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyleullet}$ with desactivation zone $F^{\scriptscriptstyleullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

The larger is p, the larger is N_0 then $\mathscr C$ is p-divergent with N_0 , then $\mathscr C$ is p'-divergent with N_0' as soon as $1/2 < p' \le p$ and $N_0' \ge N_0$

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
- If $\mathscr C$ is p-divergent
 - ullet Compute a corresponding N_0
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle\bullet}$ with desactivation zone $F^{\scriptscriptstyle\bullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

The larger is p, the larger is N_0

If \mathscr{C} is p-divergent with N_0 , then \mathscr{C} is p'-divergent with N_0' as soon as $1/2 < p' \le p$ and $N_0' \ge N_0$

Is there a best p?

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
- If $\mathscr C$ is p-divergent
 - Compute a corresponding $N_{\!0}$
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle\bullet}$ with desactivation zone $F^{\scriptscriptstyle\bullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

The larger is p, the larger is N_{0}

If \mathscr{C} is p-divergent with N_0 , then \mathscr{C} is p'-divergent with N_0' as soon as $1/2 < p' \le p$ and $N_0' \ge N_0$

Is there a best p?

- ullet p big: large desactivation zone (N_0)
- m p small: small bias (few trajectories end up in $s_$)

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

The larger is p, the larger is $N_{
m 0}$

If \mathscr{C} is p-divergent with N_0 , then \mathscr{C} is p'-divergent with N_0' as soon as $1/2 < p' \le p$ and $N_0' \ge N_0$

- If \mathscr{C} is p-divergent
 - ullet Compute a corresponding N_0
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle ullet}$ with desactivation zone $F^{\scriptscriptstyle ullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

What's the trade-off?

Is there a best p?

- ullet p big: large desactivation zone (N_0)
- m p small: small bias (few trajectories end up in $s_$)

- If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

The larger is p, the larger is $N_{
m 0}$

If \mathscr{C} is p-divergent with N_0 , then \mathscr{C} is p'-divergent with N_0' as soon as $1/2 < p' \le p$ and $N_0' \ge N_0$

- If \mathscr{C} is p-divergent
 - Compute a corresponding N_0
 - Use the abstraction $\mathscr{C}_p^{\scriptscriptstyle ullet}$ with desactivation zone $F^{\scriptscriptstyle ullet}=[0;N_0]$
 - Apply Approx and Estim on \mathscr{C}' (computed on-the-fly)

What's the trade-off?

Is there a best p?

- m p big: large desactivation zone (N_0)
- m p small: small bias (few trajectories end up in s_-)

Note: in all experiments, the confidence is set to 99~%

First example

ullet State-free proba. pushdown automaton $\mathscr C$

$$A \xrightarrow{1} C \quad A \xrightarrow{n} BB \quad B \xrightarrow{5} \varepsilon$$

$$B \xrightarrow{n} AA \quad C \xrightarrow{1} C$$

lacksquare Start from A, and target the empty stack

First example

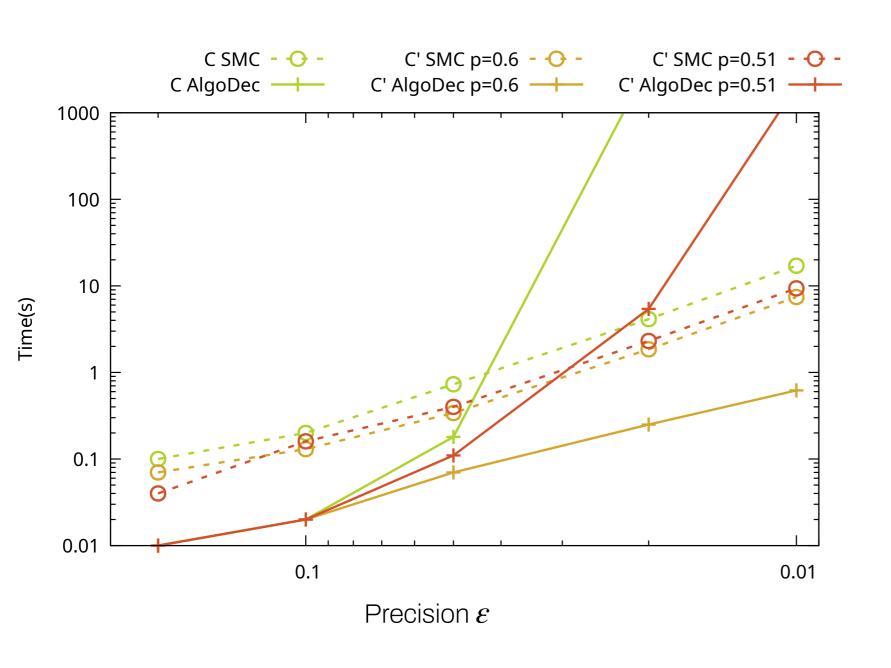
State-free proba. pushdown automaton $\mathscr C$

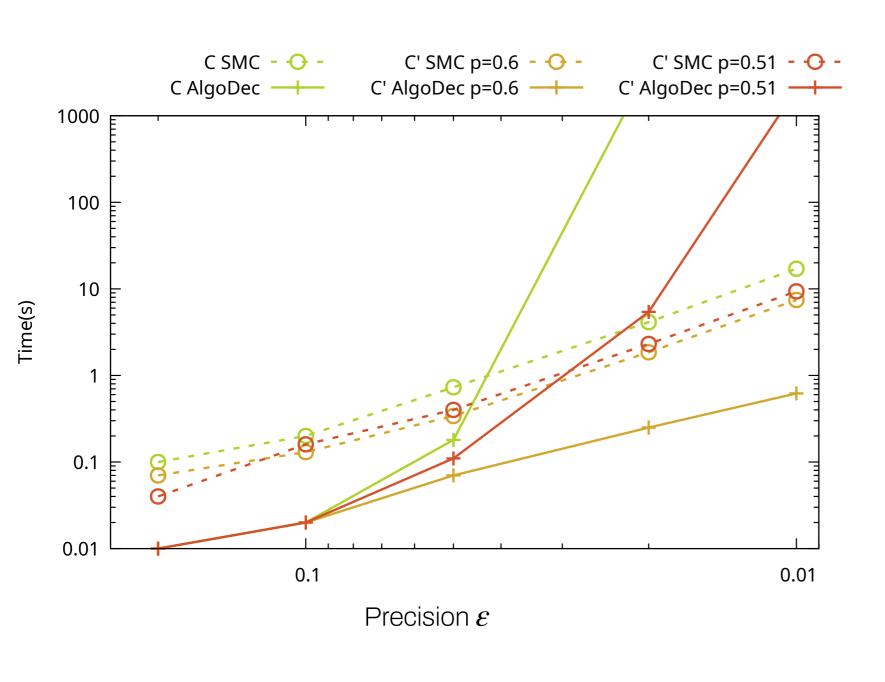
$$A \xrightarrow{1} C \quad A \xrightarrow{n} BB \quad B \xrightarrow{5} \varepsilon$$

$$B \xrightarrow{n} AA \quad C \xrightarrow{1} C$$

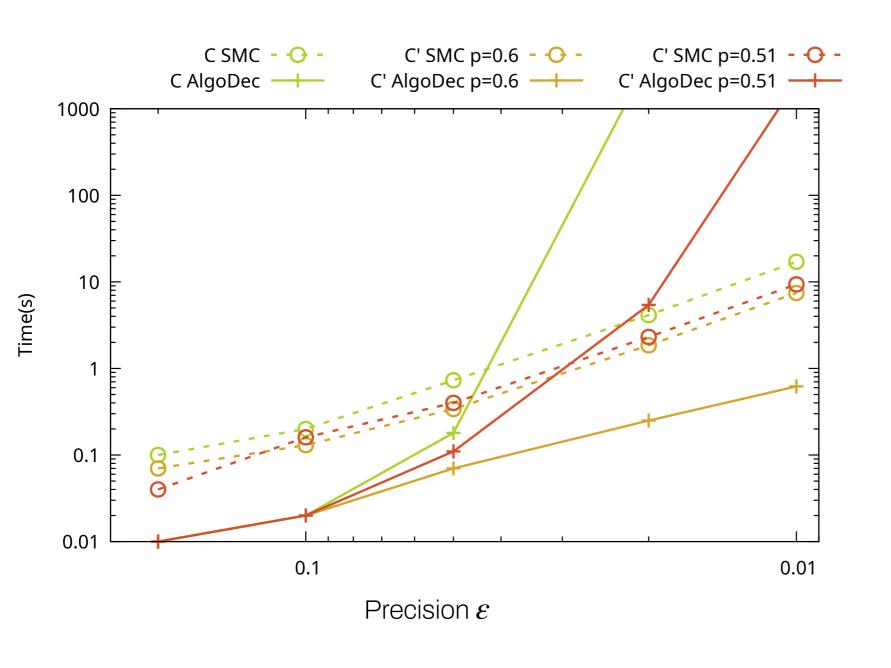
lacksquare Start from A, and target the empty stack

- ▶ It is decisive
- It is p-divergent for every 1/2

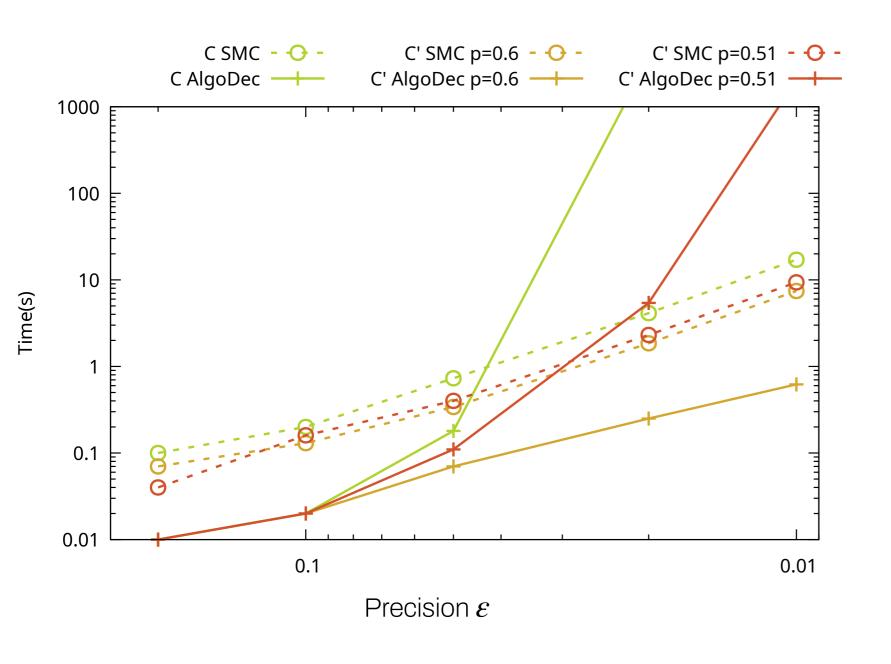




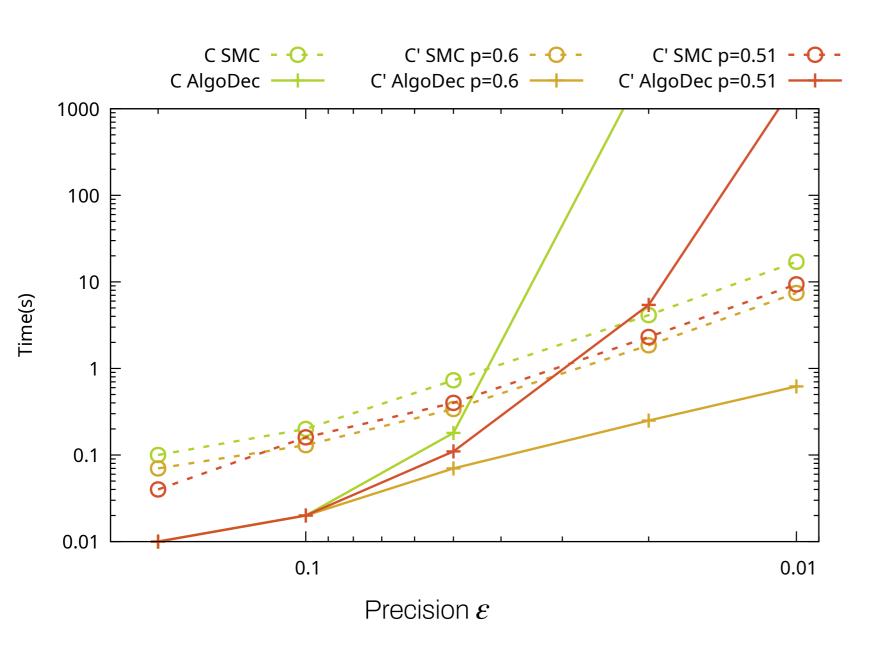
In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)



- In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)
- Importance sampling seems to improve the analysis time, both for Approx and Estim (no formal guarantee, though)

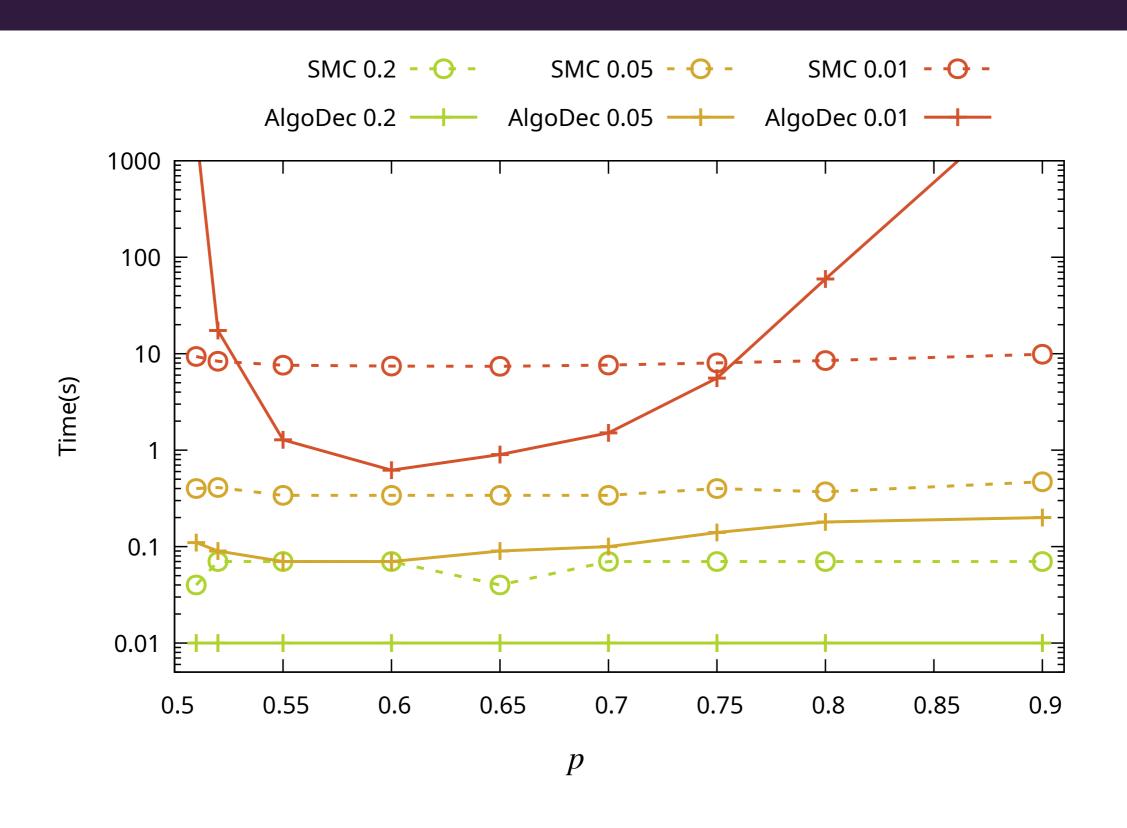


- In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)
- Importance sampling seems to improve the analysis time, both for Approx and Estim (no formal guarantee, though)
- There seems to be « a best p » (p = 0.6 here)



- In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)
- Importance sampling seems to improve the analysis time, both for Approx and Estim (no formal guarantee, though)
- There seems to be « a best p » (p = 0.6 here)
- For that best *p*, Approx behaves very well!

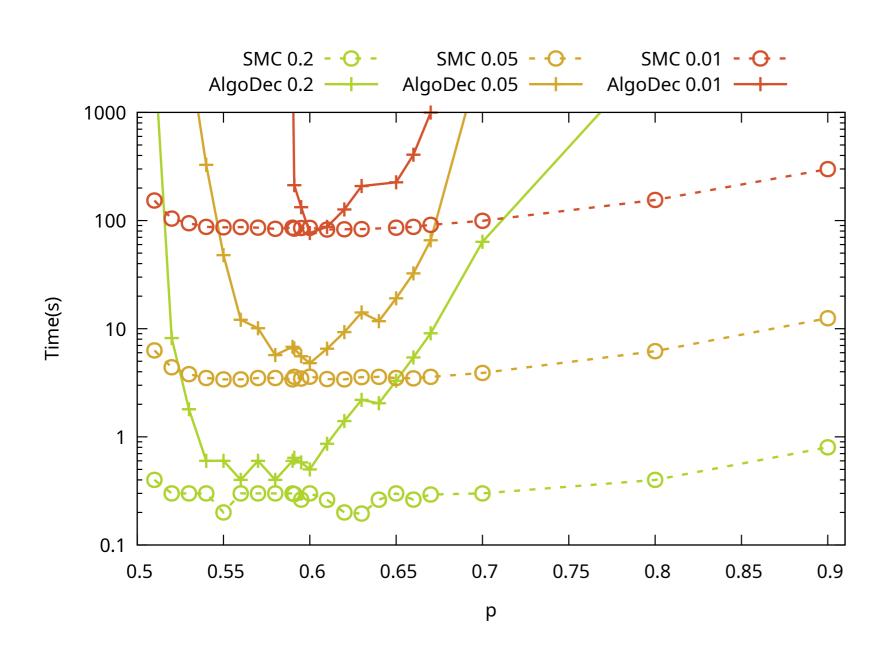
First example — continued

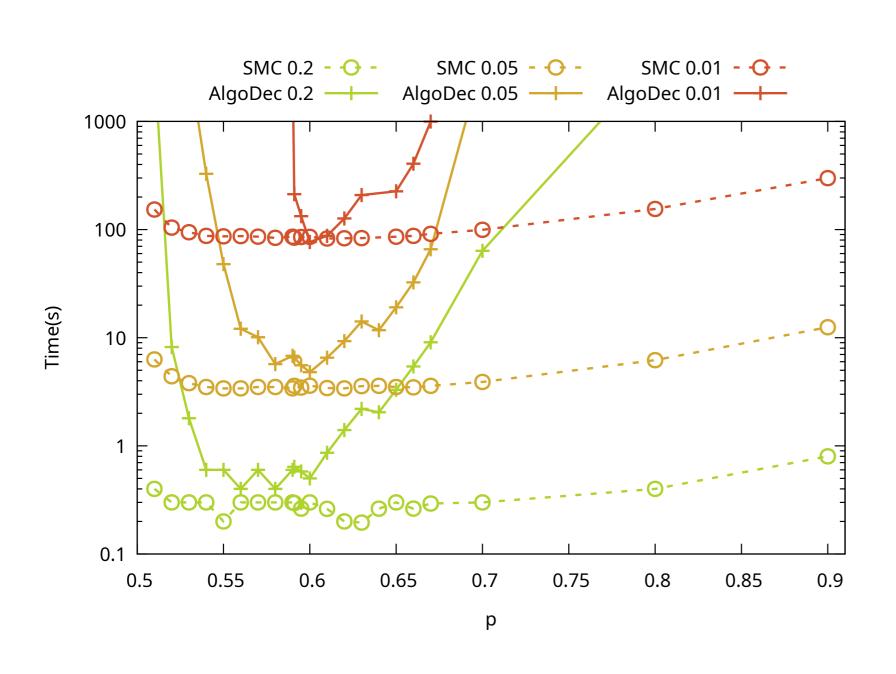


Second example

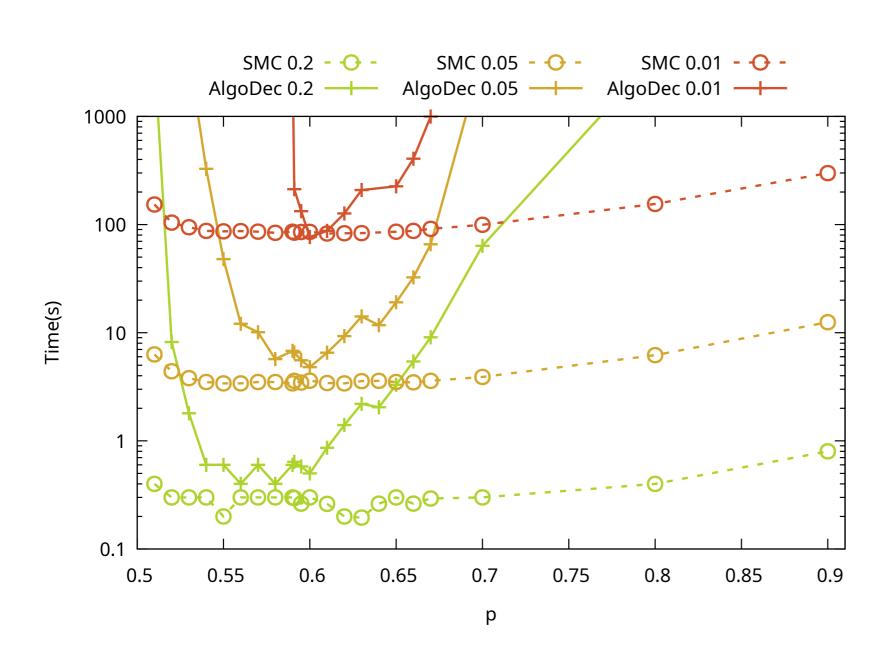
- State-free proba. pushdown automaton \mathscr{C} $A \xrightarrow{1} B \qquad A \xrightarrow{1} C \qquad B \xrightarrow{10} \varepsilon \qquad B \xrightarrow{10+n} AA$ $C \xrightarrow{10} A \qquad C \xrightarrow{10+n} BB$
- \blacktriangleright Start from A, and target the empty stack

- ▶ It is not decisive
- It is p-divergent for every 1/2

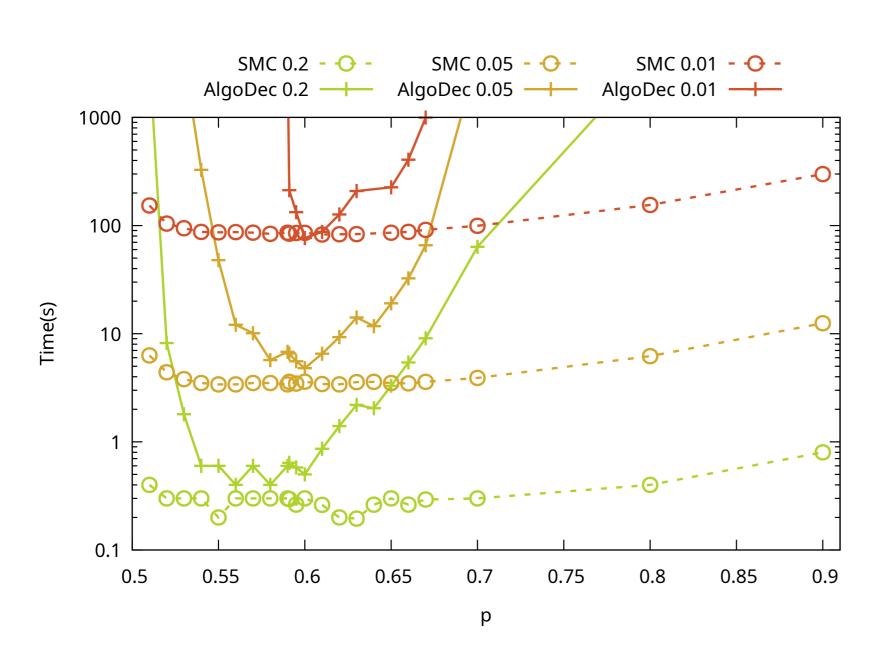




 \blacktriangleright Estim-SMC not too sensitive to p



- \blacktriangleright Estim-SMC not too sensitive to p
 - Neverthess (log scale): clear bell effect on \boldsymbol{p}



- \blacktriangleright Estim-SMC not too sensitive to p
 - Neverthess (log scale): clear bell effect on \boldsymbol{p}
- Approx very sensitive to p

• General bell effect on p?

- General bell effect on p?
- Suggests the following strategy:
 - ullet Estimate the best p using Estim-SMC
 - Apply Approx on the corresponding biased Markov chain

General bell effect on p?

- Suggests the following strategy:
 - ullet Estimate the best p using Estim-SMC
 - Apply Approx on the corresponding biased Markov chain

Deterministic guarantees

Statistical guarantees

Two approaches (numerical and statistical) for analysis of infinite Markov chains

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg (trade-off)$?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p » (trade-off)?

Any theoretical justification for that?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg (trade-off)$?

Any theoretical justification for that?

Some more classes to be applied?

Some smoother conditions for application of the approach?

- Two approaches (numerical and statistical) for analysis of infinite Months
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea (and slight extension with desactivation zone)
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg (trade-off)$?

Any theoretical justification for that?

Some more classes to be applied?