
1

Parameterized concurrent games

Patricia Bouyer-Decitre

1

Parameterized concurrent games

Patricia Bouyer-Decitre

Based on joint works with Nathalie Bertrand and
Anirban Majumdar

1

Parameterized concurrent games

Patricia Bouyer-Decitre

Based on joint works with Nathalie Bertrand and
Anirban Majumdar

Preliminary results published 
at FSTTCS’19’20

2

2

3

Goal of this work

3

Goal of this work

General objective:

How game-theoretic models and technics/tools can help 
handling parameterized verification and synthesis?

‣ Propose a new game-based model for parameterized reasoning

3

Goal of this work

General objective:

How game-theoretic models and technics/tools can help 
handling parameterized verification and synthesis?

‣ Propose a new game-based model for parameterized reasoning

‣ Design synthesis algorithms in two settings:
• Crowd controller problem
• Coalition problem

3

Goal of this work

General objective:

How game-theoretic models and technics/tools can help 
handling parameterized verification and synthesis?

4

Two-player games as a model
for controller synthesis

[Tho02] W. Thomas : Infinite Games and Verification (CAV’02)
[FOX] Lectures in Game Theory for Computer Scientists (edited by K. R. Apt and E. Grädel)

‣ Two-player game = model for open systems

‣ Two players = system vs environment

‣ Winning objective for system player = specification

‣ Winning strategy for system player = safe controller

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

 selects  
 selects

P1 b
P2 a

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

‣ Strategy is winning whenever σ1 𝖮𝗎𝗍(σ1) ⊆ V*

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

‣ Strategy is winning whenever σ1 𝖮𝗎𝗍(σ1) ⊆ V*

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

Example of winning strategy for : 
, , ,

P1
σ1(v0) = a σ1(v0v1) = a σ1(v0v2) = b σ1(v0v2v1) = a

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

‣ Strategy is winning whenever σ1 𝖮𝗎𝗍(σ1) ⊆ V*

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

Example of winning strategy for : 
, , ,

P1
σ1(v0) = a σ1(v0v1) = a σ1(v0v2) = b σ1(v0v2v1) = a

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

‣ Strategy is winning whenever σ1 𝖮𝗎𝗍(σ1) ⊆ V*

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

Example of winning strategy for : 
, , ,

P1
σ1(v0) = a σ1(v0v1) = a σ1(v0v2) = b σ1(v0v2v1) = a

‣ Game graph with G = (V, δ) δ ⊆ V × Σ2 × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several outcomes in

. It is unique whenever the arena is deterministic. We
write for that set and if only is fixed

(σ1, σ2)
Vω

𝖮𝗎𝗍(σ1, σ2) 𝖮𝗎𝗍(σi) σi

‣ Winning condition for : reachP1

‣ Winning condition for : avoid P2

‣ Strategy is winning whenever σ1 𝖮𝗎𝗍(σ1) ⊆ V*

5

Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)

ab, bb

aa
v0

v1

v2
ba

aa, ab

aa, ab

ba ba, bb

ba

bb

Example of winning strategy for : 
, , ,

P1
σ1(v0) = a σ1(v0v1) = a σ1(v0v2) = b σ1(v0v2v1) = a

‣ For many objectives, one can compute winning states and (deterministic)
winning strategies for each of the players

‣ Those games are not determined with deterministic strategies

‣ They nevertheless have values and almost-optimal winning strategies for
both players (Martin’s second determinacy results for Blackwell games)

6

What do we know about
those games?

[Mar98] D. A. Martin. The determinacy of Blackwell games (The Journal of Symbolic Logic’98)

v2

v

ab, ba

aa, bb

v

ab, ba

bb

aa

val1 = 1
 is an -optimal strategyσ1(v) = (1 − ε) ⋅ a + ε ⋅ b ε

No optimal strategy exists

7

From two-player to -player
concurrent games

N

7

From two-player to -player
concurrent games

N

abv0 v1

Two players:

with a, b ∈ Σ

7

From two-player to -player
concurrent games

N

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

‣ Game graph with

‣ A strategy for player is a mapping

‣ Given , there are possibly several
outcomes in . It is unique whenever the arena is
deterministic. We write for that set and if
only is fixed

G = (V, δ) δ ⊆ V × ΣN × V
Pi σi : V+ → Σ

σ = (σi)1≤i≤N
Vω

𝖮𝗎𝗍(σ) 𝖮𝗎𝗍(σi)
σi

7

From two-player to -player
concurrent games

N

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

‣ Game graph with

‣ A strategy for player is a mapping

‣ Given , there are possibly several
outcomes in . It is unique whenever the arena is
deterministic. We write for that set and if
only is fixed

G = (V, δ) δ ⊆ V × ΣN × V
Pi σi : V+ → Σ

σ = (σi)1≤i≤N
Vω

𝖮𝗎𝗍(σ) 𝖮𝗎𝗍(σi)
σi

7

From two-player to -player
concurrent games

N

[MW03] S. Mohalik, I. Walukiewicz. Distributed Games (FSTTCS’03)
[BBMU15] P. Bouyer, R. Brenguier, N. Markey, M. Ummels. Pure Nash Equilibria in Concurrent Deterministic Games (LMCS’15)
[KPV16] O. Kupferman, G. Perelli, M. Vardi. Synthesis with Rational Environments (AMAI’16)
[DMV18] D. Berwanger, A.B. Mathew, M. van den Bogaard. Hierarchical Information and the Synthesis of Distributed Strategies (Acta Informatica’18)

w
v0

 players:N
v1

with w ∈ ΣN

‣ Use of these games:

• For coordination (specific Nature player, and partial observability) [DMV18]
— linked to distributed synthesis [MW03]

• For rational synthesis (e.g. constrained Nash equilibria) [BBNM15,KPV16]

abv0 v1

Two players:

with a, b ∈ Σ

8

Parameterized verification

8

Parameterized verification

‣ Standard verification: can only verify instances of the
system, where the value of the parameter is known

Fix , and check N S(N) ⊧ φ

8

Parameterized verification

‣ Standard verification: can only verify instances of the
system, where the value of the parameter is known

‣ Parameterized verification: design algorithms to verify all
instances of the system, at once

Fix , and check N S(N) ⊧ φ

Check that for every S(N) ⊧ φ N

8

Parameterized verification

‣ Standard verification: can only verify instances of the
system, where the value of the parameter is known

‣ Parameterized verification: design algorithms to verify all
instances of the system, at once

Fix , and check N S(N) ⊧ φ

Check that for every S(N) ⊧ φ N

Various kinds of parameters:
‣ In arithmetic contraints (timed automata,

counter automata, hybrid automata,
Markov chains, …)

‣ Number of agents

9

Why parameterized
verification?

9

‣ Abstraction for systems with an arbitrary or unknown number of participants

Why parameterized
verification?

9

‣ Abstraction for systems with an arbitrary or unknown number of participants

‣ Examples:
• Distributed algorithms (e.g. leader election protocol)
• Network protocols
• Swarm intelligence systems
• …

Why parameterized
verification?

[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification
9

‣ Abstraction for systems with an arbitrary or unknown number of participants

‣ Examples:
• Distributed algorithms (e.g. leader election protocol)
• Network protocols
• Swarm intelligence systems
• …

‣ It is not true that errors always occur with small instances of the parameters
• Example of the Futurebus+ cache coherence protocol

Why parameterized
verification?

[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification
9

‣ Abstraction for systems with an arbitrary or unknown number of participants

‣ Examples:
• Distributed algorithms (e.g. leader election protocol)
• Network protocols
• Swarm intelligence systems
• …

‣ It is not true that errors always occur with small instances of the parameters
• Example of the Futurebus+ cache coherence protocol

‣ Need to design methods for verifying parameterized systems, not only
instances

Why parameterized
verification?

10

Parameterized verification
of crowds

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)
[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification

10

‣ Processes executing the same piece of code (crowd)

Parameterized verification
of crowds

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)
[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification

10

‣ Processes executing the same piece of code (crowd)

‣ All decidability/complexity/memory issues depend on many features:
• Communication structure (broadcasts, rendez-vous, shared variables,

token-passing, …)
• With or without fixed architecture
• With or without identifiers
• …

Parameterized verification
of crowds

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)
[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification

10

‣ Processes executing the same piece of code (crowd)

‣ All decidability/complexity/memory issues depend on many features:
• Communication structure (broadcasts, rendez-vous, shared variables,

token-passing, …)
• With or without fixed architecture
• With or without identifiers
• …

‣ Decidability often relies on:
• Well-structured transition systems
• Existence of cutoffs

Parameterized verification
of crowds

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)
[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification

11

From two-player to arbitrarily-
many player concurrent games

11

From two-player to arbitrarily-
many player concurrent games

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

11

From two-player to arbitrarily-
many player concurrent games

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

w
v0

Unknown number of players:

v1

with w ∈ Σ+

‣ Game graph with G = (V, δ) δ ⊆ V × Σ+ × V

11

From two-player to arbitrarily-
many player concurrent games

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

w
v0

Unknown number of players:

v1

with w ∈ Σ+

‣ Game graph with G = (V, δ) δ ⊆ V × Σ+ × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several

outcomes in . It is unique whenever the arena is
deterministic. We write for that set and if
only is fixed

σ = (σi)1≤i≤N
Vω

𝖮𝗎𝗍(σ) 𝖮𝗎𝗍(σi)
σi

11

From two-player to arbitrarily-
many player concurrent games

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

w
v0

Unknown number of players:

v1

with w ∈ Σ+

‣ Game graph with G = (V, δ) δ ⊆ V × Σ+ × V
‣ A strategy for player is a mapping Pi σi : V+ → Σ
‣ Given , there are possibly several

outcomes in . It is unique whenever the arena is
deterministic. We write for that set and if
only is fixed

σ = (σi)1≤i≤N
Vω

𝖮𝗎𝗍(σ) 𝖮𝗎𝗍(σi)
σi

11

From two-player to arbitrarily-
many player concurrent games

Assumption: for every ,

 is regular

(v, v′�) ∈ V2

{w ∈ Σ+ ∣ (v, w, v′�) ∈ δ}

Lv0 v1

with regular languageL

w
v0

 players:N
v1

with w ∈ ΣN

abv0 v1

Two players:

with a, b ∈ Σ

w
v0

Unknown number of players:

v1

with w ∈ Σ+

12

How do we play such a
game?

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

‣ Given the history (in) so far, each player selects an action V*v Pi ai ∈ Σ

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

‣ Given the history (in) so far, each player selects an action V*v Pi ai ∈ Σ

‣ The game proceeds to some (non-det. choice) such that vj a1a2…ak ∈ Lv,vj

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

‣ Given the history (in) so far, each player selects an action V*v Pi ai ∈ Σ

‣ The game proceeds to some (non-det. choice) such that vj a1a2…ak ∈ Lv,vj

‣ This produces an outcome in Vω

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …

12

How do we play such a
game?

‣ A coalition of size is chosen, but is unknown to the playersk
‣ Each player knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

‣ Given the history (in) so far, each player selects an action V*v Pi ai ∈ Σ

‣ The game proceeds to some (non-det. choice) such that vj a1a2…ak ∈ Lv,vj

‣ This produces an outcome in Vω

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …
Adversarial choice

Adversarial choice

13

Two synthesis problems

13

Two synthesis problems

The crowd controller problem

« Gru wants to guide/control the Minions »

13

Two synthesis problems

The crowd controller problem

« Gru wants to guide/control the Minions »

The coalition synthesis problem

« The Minions want to achieve some goal »

14

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

14

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

14

‣ The number of players is chosen (but unknown to everyone)k

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1
• σ1(v0) = σ1(v0v1) = σ1(v0v2) = a
• σ1(v0v1v3) = a
• σ1(v0v2v3) = b

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1
• σ1(v0) = σ1(v0v1) = σ1(v0v2) = a
• σ1(v0v1v3) = a
• σ1(v0v2v3) = b

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1
• σ1(v0) = σ1(v0v1) = σ1(v0v2) = a
• σ1(v0v1v3) = a
• σ1(v0v2v3) = b

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

(learns it when visiting or)P1 v1 v2

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1
• σ1(v0) = σ1(v0v1) = σ1(v0v2) = a
• σ1(v0v1v3) = a
• σ1(v0v2v3) = b

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

(learns it when visiting or)P1 v1 v2

14

‣ The number of players is chosen (but unknown to everyone)k

‣ Assume the following strategy for player :P1
• σ1(v0) = σ1(v0v1) = σ1(v0v2) = a
• σ1(v0v1v3) = a
• σ1(v0v2v3) = b

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

‣ In both cases, the choice of at ensures reaching P1 v3

The crowd controller
problem

a(aa)*

(aa)* Σ*

Σ*
a(Σ2)*

bΣ(Σ2)*
v0

v1

v2

v3

b(Σ2)*
aΣ(Σ2)*

Can player enforce ?P1

(learns it when visiting or)P1 v1 v2

15

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

The coalition problem

15

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

‣ At , each player chooses v0 a

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

‣ At , each player chooses v0 a

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

‣ At , each player chooses v0 a

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

(all players learn it when visiting or)v1 v2

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

‣ At , each player chooses v0 a

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

‣ For each :i
• and σ2i(v0v1v3) = a σ2i(v0v2v3) = b
• and σ2i+1(v0v1v3) = b σ2i+1(v0v2v3) = a

(all players learn it when visiting or)v1 v2

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

15

‣ The number of players is chosen (but unknown to everyone)k

‣ At , each player chooses v0 a

‣ If is odd, the game proceeds to  
If is even, the game proceeds to

k v1
k v2

‣ For each :i
• and σ2i(v0v1v3) = a σ2i(v0v2v3) = b
• and σ2i+1(v0v1v3) = b σ2i+1(v0v2v3) = a

‣ For every , k 𝖮𝗎𝗍((σi)1≤i≤k) ⊆ V*

(all players learn it when visiting or)v1 v2

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

Can any coalition ensure ?

The coalition problem

16

The crowd controller
problem

17

The crowd controller
problem

‣ Input: parameterized game and linear property

‣ Question: does there exist s.t. for every , for every ,for every , ?

G = (V, δ) φ
σ1 k (σi)2≤i≤k ρ ∈ 𝖮𝗎𝗍((σi)1≤i≤k) ρ ⊧ φ

 = GruP1

18

From languages to counting

a(aa)*

(aa)*

v0

v1

v2

v3

 objectiveφ

b ∨ (bab)*

Σ*…

…

…

18

From languages to counting

count
a(aa)*

(aa)*

v0

v1

v2

v3

 objectiveφ

b ∨ (bab)*

Σ*…

…

…

18

From languages to counting

Note : regular language implies
 is a semi linear set

L
count(L)

count
a(aa)*

(aa)*

v0

v1

v2

v3

 objectiveφ

b ∨ (bab)*

Σ*…

…

…

a; 1 + 2ℕ

a; 2ℕ

v0

v1

v2

v3

 objectiveφ

b; {1} ∪ 3ℕ

a, b; ℕ… …

…

18

From languages to counting

How do we play this new game?

‣ The game starts at

‣ The opponent chooses (unknown to Gru)
‣ While (true)

• At vertex , Gru chooses an action  
and opponent chooses an edge with

• The game proceeds from

v0

k

v
v a;S v′� k ∈ S

v′�

count
a(aa)*

(aa)*

v0

v1

v2

v3

 objectiveφ

b ∨ (bab)*

Σ*…

…

…

a; 1 + 2ℕ

a; 2ℕ

v0

v1

v2

v3

 objectiveφ

b; {1} ∪ 3ℕ

a, b; ℕ… …

…

18

From languages to counting

Gru wins the language/original game iff he wins the counting game

count
a(aa)*

(aa)*

v0

v1

v2

v3

 objectiveφ

b ∨ (bab)*

Σ*…

…

…

a; 1 + 2ℕ

a; 2ℕ

v0

v1

v2

v3

 objectiveφ

b; {1} ∪ 3ℕ

a, b; ℕ… …

…

19

From counting to turn-based
knowledge games

a; S1

a; S2

v0

v1

v2

 objectiveφ

19

From counting to turn-based
knowledge games

a; S1

a; S2

v0

v1

v2

 objectiveφ

a
v0; K

v2; K ∩ S2

v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ

19

From counting to turn-based
knowledge games

: knowledgeK

: updated knowledgeK ∩ S2

a; S1

a; S2

v0

v1

v2

 objectiveφ

a
v0; K

v2; K ∩ S2

v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ

‣ Gru (Oval) chooses action
‣ Vector (Box) chooses semi linear set

‣ The game starts at , and knowledge is updated
at each round

(v0; ℕ)

19

From counting to turn-based
knowledge games

: knowledgeK

: updated knowledgeK ∩ S2

a; S1

a; S2

v0

v1

v2

 objectiveφ

a
v0; K

v2; K ∩ S2

v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ

19

From counting to turn-based
knowledge games

: knowledgeK

: updated knowledgeK ∩ S2

Gru wins the counting game iff he wins the knowledge game

a; S1

a; S2

v0

v1

v2

 objectiveφ

a
v0; K

v2; K ∩ S2

v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ

19

From counting to turn-based
knowledge games

: knowledgeK

: updated knowledgeK ∩ S2

Gru wins the counting game iff he wins the knowledge game

a; S1

a; S2

v0

v1

v2

 objectiveφ

Note : the complexity is that of solving turn-based knowledge games with objective  
Example: polynomial-time w.r.t. its size for Reachability objectives

φ

a
v0; K

v2; K ∩ S2

v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ

20

An example

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

20

An example

v0; ℕ

v2; 2ℕ

v1; 1 + 2ℕ

v0; ℕ; a

v1; 1 + 2ℕ; *

v2; 2ℕ; *

v3; 1 + 2ℕ; a

v3; 1 + 2ℕ; b

v3; 2ℕ; a

v3; 2ℕ; b

v3; 1 + 2ℕ

v3; 2ℕ

a

a
a, b

a, b a

b

b

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

20

An example

v0; ℕ

v2; 2ℕ

v1; 1 + 2ℕ

v0; ℕ; a

v1; 1 + 2ℕ; *

v2; 2ℕ; *

v3; 1 + 2ℕ; a

v3; 1 + 2ℕ; b

v3; 2ℕ; a

v3; 2ℕ; b

v3; 1 + 2ℕ

v3; 2ℕ

a

a
a, b

a, b a

b

b

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

20

An example

a(aa)*

(aa)* Σ*

Σ*
(ab)*

b(ab)*

v0

v1

v2

v3

(ba)*
a(ba)*

v0; ℕ

v2; 2ℕ

v1; 1 + 2ℕ

v0; ℕ; a

v1; 1 + 2ℕ; *

v2; 2ℕ; *

v3; 1 + 2ℕ; a

v3; 1 + 2ℕ; b

v3; 2ℕ; a

v3; 2ℕ; b

v3; 1 + 2ℕ

v3; 2ℕ

a

a
a, b

a, b a

b

b

21

The results

Complexity results
The crowd controller problem is decidable and has the following complexity for
Reachability objectives:

Deterministic arenas Non-deterministic arenas

Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets
PSPACE-complete

Reg/CF languages

21

The results

Complexity results
The crowd controller problem is decidable and has the following complexity for
Reachability objectives:

Deterministic arenas Non-deterministic arenas

Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets
PSPACE-complete

Reg/CF languages

‣ Each knowledge is an intersection of (atomic) constraints used in the game

‣ The number of possible knowledges is therefore at most exponential in the number of (atomic) constraints used in the game
• Semilinear sets: the knowledge game is at most exponential in the number of semilinear sets

‣ Finite unions of intervals: the knowledge game is at most exponential in the number of endpoints

‣ Intervals: the knowledge game is quadratic in the number of endpoints of the intervals

22

PSPACE algorithm - 1

v0; K

v2; K v1; K

v0; K v0; K

v0; K v1; K; b

v1; K′� v2; K′�′�

v1; K; a

v3; K′�

K′�, K′�′� ⊊ K

Subgame associated with knowledge K

22

PSPACE algorithm - 1

v0; K

v2; K v1; K

v0; K v0; K

v0; K v1; K; b

v1; K′� v2; K′�′�

v1; K; a

v3; K′�

K′�, K′�′� ⊊ K

Subgame associated with knowledge K

K0

K1
K2

K3

K3 ⊊ K1, K2 ⊊ K0

23

PSPACE algorithm - 2

K0

K1
K2

K3

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

• Tag losing states with

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

• Tag losing states with

‣ Go to subgame with knowledge :K2

• Objective: φ or Reach()

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

• Tag losing states with

‣ Go to subgame with knowledge :K2

• Objective: φ or Reach()
• Tag winning states with

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

• Tag losing states with

‣ Go to subgame with knowledge :K2

• Objective: φ or Reach()
• Tag winning states with
• Tag losing states with

23

PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with

• Tag losing states with

‣ Go to subgame with knowledge :K2

• Objective: φ or Reach()
• Tag winning states with
• Tag losing states with

‣ Etc…

24

PSPACE-hardness - 1
QSAT formula ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

24

PSPACE-hardness - 1
QSAT formula ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c; = 2 c; = 4 c; = 6 c; = 8

c; ≠ 2 c; ≠ 4 c; ≠ 6 c; ≠ 8

c; ≠ 1 c; ≠ 3 c; ≠ 5 c; ≠ 7

c; = 1 c; = 3 c; = 5 c; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to (encoding true), and if , then go tox2 k = 4

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to (encoding true), and if , then go tox2 k = 4
• Or the game proceeds to (encoding false), and if , then go tox2 k = 3

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to (encoding true), and if , then go tox2 k = 4
• Or the game proceeds to (encoding false), and if , then go tox2 k = 3
• Otherwise the game proceeds to v2

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to (encoding true), and if , then go tox2 k = 4
• Or the game proceeds to (encoding false), and if , then go tox2 k = 3
• Otherwise the game proceeds to v2

‣ Etc…

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

25

PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if is trueψ
‣ At , play the correct assignment, say false (i.e.), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to (encoding true), and if , then go tox2 k = 4
• Or the game proceeds to (encoding false), and if , then go tox2 k = 3
• Otherwise the game proceeds to v2

‣ Etc…
‣ At , , (in the first case above), …. hence Gru can enforce if and only if the chosen

assignment makes the two clauses true
C1 k ≠ 1 k ≠ 4

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c ; = 2 c ; = 4 c ; = 6 c ; = 8

c ; ≠ 2 c ; ≠ 4 c ; ≠ 6 c ; ≠ 8

c ; ≠ 1 c ; ≠ 3 c ; ≠ 5 c ; ≠ 7

c ; = 1 c ; = 3 c ; = 5 c ; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

26

PSPACE-hardness - 3
QSAT formula ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

 is true iff Gru has a winning strategy in the above counting gameψ

v0

x1

x1

v1 C2

x2

x2

x3

x3

x4

x4

v2 v3 C1

a1

a1

a3

a3

u u

uu

c; = 2 c; = 4 c; = 6 c; = 8

c; ≠ 2 c; ≠ 4 c; ≠ 6 c; ≠ 8

c; ≠ 1 c; ≠ 3 c; ≠ 5 c; ≠ 7

c; = 1 c; = 3 c; = 5 c; = 7

a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4

27

Going further?

27

‣ The previous approach yielding the PSPACE upper bound
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved in
PSPACE

Going further?

27

‣ The previous approach yielding the PSPACE upper bound
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved in
PSPACE

‣ What about more involved quantitative objectives/payoffs?

Going further?

27

‣ The previous approach yielding the PSPACE upper bound
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved in
PSPACE

‣ What about more involved quantitative objectives/payoffs?

‣ We believe the approach can be extended to « structured »
infinite-state systems (e.g. pushdown systems)

Going further?

28

The coalition problem

29

The coalition problem

‣ Input: parameterized game and linear property

‣ Question: does there exist such that for every , for every , ?

G = (V, δ) φ
(σi)i≥1 k ρ ∈ 𝖮𝗎𝗍((σi)1≤i≤k) ρ ⊧ φ

30

An intriguing example

a*ba+

v0

v1a*b

Σ+∖a*ba*

30

An intriguing example

A winning coalition strategy

‣ At round :i
• Player plays i b
• Player plays j ≠ i a

a*ba+

v0

v1a*b

Σ+∖a*ba*

30

An intriguing example

A winning coalition strategy

‣ At round :i
• Player plays i b
• Player plays j ≠ i a

a*ba+

v0

v1a*b

Σ+∖a*ba*

If :  
If :  
If :

k = 1 v0
b

k = 2 v0
ba v0

ab

k = 3 v0
baa v0

aba v0
aab

⋮

30

An intriguing example

A winning coalition strategy

‣ At round :i
• Player plays i b
• Player plays j ≠ i a

‣ At round , coalition plays i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*

If :  
If :  
If :

k = 1 v0
b

k = 2 v0
ba v0

ab

k = 3 v0
baa v0

aba v0
aab

⋮

31

Tree unfolding

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

31

Tree unfolding

v0

v0 v2

v0

v1

v0 v2v1 v1

v0v0 v1

⋮

⋮ ⋮⋮

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

L0⊥L00

L21L10 L1⊥ ⋮

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

31

Tree unfolding

There is a winning coalition strategy in the game iff there is a winning
coalition strategy in the unfolding

v0

v0 v2

v0

v1

v0 v2v1 v1

v0v0 v1

⋮

⋮ ⋮⋮

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

L0⊥L00

L21L10 L1⊥ ⋮

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

Possible solution:
-
-
-
-

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

Possible solution:
-
-
-
-

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

‣ :  
since , ,
k = 1 v0

a v2
a v1

b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

Possible solution:
-
-
-
-

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

‣ :  
since , ,
k = 1 v0

a v2
a v1

b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

‣ :  
since ,
k > 1 v0

abak−2
v1

ak
v0 → …

abak−2 ∈ L01 ak ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

32

Tree unfolding — Safety case

There is a winning coalition strategy in the unfolding iff there are infinite words s.t.
for every , playing at each internal node ensures avoiding

(ui)i
k ≥ 1 ui

≤k

For a safety condition: the unfolding can be pruned
v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

Possible solution:
-
-
-
-

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

‣ :  
since , ,
k = 1 v0

a v2
a v1

b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

‣ :  
since ,
k > 1 v0

abak−2
v1

ak
v0 → …

abak−2 ∈ L01 ak ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

33

Construction of a finite
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

We launch several computations in parallel:

p0
p0
q0
−−
s0

−−
r0

−−
s0

p1
p1
×

−−
s1

−−
r1

−−
s3

b
a
Σ
b

This state is unsafe, due to the branch v0v1

, b ∈ L0,1 a ∈ L1⊥ = Σ+∖L10
(accepting, not accepting)p1 s1

34

Construction of a finite
automaton — 2

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

34

Construction of a finite
automaton — 2

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

p0
p0
q0
−−
s0

−−
r0

−−
s0

p0
p0
q1
−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s3

−−
r1

−−
s3

p1
p1
×

−−
s2

−−
r1

−−
×

p1
p1
×

−−
×

−−
r1

−−
×

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe

34

Construction of a finite
automaton — 2

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

Safe word: 

U =
a
a
a
b

b
a
a
a

a
a
a
a

ω

p0
p0
q0
−−
s0

−−
r0

−−
s0

p0
p0
q1
−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s3

−−
r1

−−
s3

p1
p1
×

−−
s2

−−
r1

−−
×

p1
p1
×

−−
×

−−
r1

−−
×

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe

34

Construction of a finite
automaton — 2

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

 
 
 

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

Safe word: 

U =
a
a
a
b

b
a
a
a

a
a
a
a

ω

p0
p0
q0
−−
s0

−−
r0

−−
s0

p0
p0
q1
−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s3

−−
r1

−−
s3

p1
p1
×

−−
s2

−−
r1

−−
×

p1
p1
×

−−
×

−−
r1

−−
×

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe

35

Recap

There is a winning safe coalition strategy in the game iff there is an infinite
safe word in the constructed automaton

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥

36

The result

 Decidability/complexity results
The safety coalition problem is decidable in EXPSPACE. It is
PSPACE-hard.

‣ Upper bound: the size of the pruned unfolding can be exponential (and not
possible to consider a polynomial-size DAG instead)

‣ Lower bound: similar reduction as for the strong controller synthesis from
QSAT

37

Going further?

37

‣ Understand the case of other objectives, starting with
Reachability

Going further?

A winning coalition strategy

‣ At round :

• Player plays

• Player plays

‣ At round , coalition plays

i
i b
j ≠ i a

i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*

37

‣ Understand the case of other objectives, starting with
Reachability

‣ Limits: undecidability if regular relations instead of regular
languages

Going further?

A winning coalition strategy

‣ At round :

• Player plays

• Player plays

‣ At round , coalition plays

i
i b
j ≠ i a

i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*

38

Undecidability under
rational relations

q

q′�

Det. Turing machine ℳ

38

Undecidability under
rational relations

q

q′�

Det. Turing machine ℳ

,
wℛw′�

w w′�
(Σ × Σ)* (Σ × Σ)*q q′�(),

(Σ × Σ)* (q ,)

w
w′�

38

Undecidability under
rational relations

q

q′�

Det. Turing machine ℳ

,
wℛw′�

w w′�
(Σ × Σ)* (Σ × Σ)*q q′�(),

(Σ × Σ)* (q ,)

w
w′�

 has no bounded execution iff the coalition can coordinate to reach ℳ

39

Conclusion and further work

40

Summary

40

‣ A concurrent parameterized game model
• To reason about an unbounded number of agents
• A natural extension of standard concurrent games

Summary

40

‣ A concurrent parameterized game model
• To reason about an unbounded number of agents
• A natural extension of standard concurrent games

‣ Two natural problems under inspection:
• The crowd controller problem
• The coalition problem

Summary

41

Further work

41

‣ Some technical further work:
• Better understand the coalition problem

Further work

41

‣ Some technical further work:
• Better understand the coalition problem

‣ Investigate solution concepts relevant to multiplayer games?
• Various notions of rational behaviors (e.g. equilibria)

Further work

41

‣ Some technical further work:
• Better understand the coalition problem

‣ Investigate solution concepts relevant to multiplayer games?
• Various notions of rational behaviors (e.g. equilibria)

‣ Integrate new features in the model for better modeling power
• Add partial information?
• Infinite state space useful?
• More general structures than words?

Further work

42

Questions?

