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Goal of this work

General objective:

How game-theoretic models and technics/tools can help
handling parameterized verification and synthesis?

» Propose a new game-based model for parameterized reasoning

» Design synthesis algorithms in two settings:
« Crowd controller problem
« (Coalition problem



Two-player games as a model

for controller synthesis

» Two-player game = model for open systems
» TwoO players = system vs environment
» Winning objective for system player = specification

» Winning strategy for system player = safe controller




Two-player (zero-sum)
concurrent games

[AHK98,07] L. De Alfaro, T. Henzinger, O. Kupferman. Concurrent reachability games (FOCS’98, TCS’07)
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Game graph G = (V,8)withd C VX X2 x V
A strategy for player P;is a mapping o; : Vt - X

Given (01, 0,), there are possibly several outcomes in
V@ _ltis unique whenever the arena is deterministic. We
write Out(o, 0,) for that set and Out(o;) if only o; is fixed

Winning condition for P;: reach ©)
Winning condition for P,: avoid ©)
Strategy o, is winning whenever Out(o;) C V* )

Example of winning strategy for Py:
GI(VO) = d, O'l(V()Vl) = d, UI(VOVZ) = b, Ul(V()Vle) =d



What do we know about

those games?

» Formany objectives, one can compute winning states and (deterministic)
winning strategies for each of the players

» Those games are not determined with deterministic strategies

ab, ba

aa, bb @

» They nevertheless have values and almost-optimal winning strategies for
both players (Martin’s second determinacy results for Blackwell games)

ab. ba valy =1

o(v) =1 —¢€)-a+ e bisan e-optimal strategy

g No optimal strategy exists
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From two-player to N-player

concurrent games

Two players:
O—©0
Gamegraph G = (V,§) withd C VX XN x V
witha, b € 2 A strategy for player P;is amapping o; : V¥ —» X
N players: Given 6 = (0;); <;<y: there are possibly several

w . S .
@ »@ outcomes in V®. Itis unique whenever the arena is

deterministic. We write Out(o) for that set and Out(o;) if
withw € 2V only o; s fixed

» Use of these games:

e [For coordination (specific Nature player, and partial observability)
— linked to distributed synthesis

e Forrational synthesis (e.g. constrained Nash equilibria)
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Parameterized verification

» Standard verification: can only verity instances of the
system, where the value of the parameter is known

Fix N, and check S(NV) F @ ¢

v
GG

» Parameterized verification: design algorithms to verity all
INnstances of the system, at once

Various kinds of parameters:

» INn arithmetic contraints (timed automata,
counter automata, hybrid automata,
Markov chains, ...)

» Number of agents
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Why parameterized

verification?

» ADbstraction for systems with an arbitrary or unknown number of participants

» Examples:
« Distributed algorithms (e.g. leader election protocol)
« Network protocols
« Swarm intelligence systems

. ot

» Itis not true that errors always occur with small instances of the parameters
« Example of the Futurebus+ cache coherence protocol

» Need to design methods for verifying parameterized systems, not only
Instances
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[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)
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Parameterized verification

of crowds

» Processes executing the same piece of code (crowd)

» All decidability/complexity/memory issues depend on many features:

« Communication structure (broadcasts, rendez-vous, shared variables,
token-passing, ...)

« \With or without fixed architecture
« With or without identifiers

» Decidability often relies on:
« Well-structured transition systems
« EXxistence of cutoffs

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14)

[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification 10
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From two-player to arbitrarily-

many player concurrent games

Two players:
o —0
Gamegraph G = (V, ) withd C VX Xt XV
witha, b € 2 A strategy for player P;is amapping o; : V¥ —» X
N players: Given 6 = (0;); <;<y: there are possibly several

w . S .
@ »@ outcomes in V®. Itis unique whenever the arena is

deterministic. We write Out(o) for that set and Out(o;) if
withw € 2V only o; s fixed

Unknown number of players:
o0

withw € 27

Assumption: for every (v, V") € V2,

lwe Xt | (v,w,v') € 6} isregular

oO—©O

with L regular language

11
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Two synthesis problems

The crowd controller problem The coalition synthesis problem
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« (3ru wants to guide/control the Minions » « The Minions want to achieve some goal »
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The crowd controller

problem

a(E2), @
# bt -
Can player P, enforce @ ?
aZ(ZZ)*
b(Z?)* @

» The number k of players is chosen (but unknown to everyone)

» Assume the following strategy for player P;:
« 6,(vy) = 01(vyvy) = 0,(Vyv,) = a
« 6(vgvv3) = a
« 6;(vg»yv3) =D

» If kis odd, the game proceeds to 12
If k is even, the game proceeds to v,

» In both cases, the choice of P at vy ensures reaching @
14



The coalition problem

= YR YCXT,
: @ i

> el
. (‘/‘ ‘

/i NN AR
; 4 g 5 )




The coalition problem

Can any coalition ensure &)?




The coalition problem

Can any coalition ensure &)?

» The number k of players is chosen (but unknown to everyone)

15



The coalition problem

Can any coalition ensure &)?

» The number k of players is chosen (but unknown to everyone)

» Aty each player chooses a

15



The coalition problem

Can any coalition ensure &)?

» The number k of players is chosen (but unknown to everyone)

» Aty each player chooses a

15



The coalition problem

Can any coalition ensure &)?

» The number k of players is chosen (but unknown to everyone)

» Aty each player chooses a

» If kis odd, the game proceeds to v,
If k is even, the game proceeds to v,

15



The coalition problem

Can any coalition ensure &)?

» The number k of players is chosen (but unknown to everyone)

» Aty each player chooses a

» If kis odd, the game proceeds to v,
If k is even, the game proceeds to v,

» Foreach 1:
o 02i(VOV1V3) = @ and Uzi(VOV2V3) = b
« 05;.1(Vov1v3) = band 6y, 1(Vy»,v3) = a

15



The coalition problem

o ‘ Can any coalition ensure @9
W < V3
D > a(ba)*

(ba)*
» The number k of players is chosen (but unknown to everyone)
» Aty each player chooses a

» If kis odd, the game proceeds to v,
If k is even, the game proceeds to v,

» Foreach 1:
o 02i(VOV1V3) = @ and Uzi(VOV2V3) = b
« 05;.1(Vov1v3) = band 6y, 1(Vy»,v3) = a

» Forevery k, Out((6;);<;j<x) € V¥ ©
15



The crowd controller
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The crowd controller
problem

» Input: parameterized game G = (V, 0) and linear property ¢

» Question: does there exist 6y s.t. for every k, for every (0;), <;<.for every p € Out((ai)lgigk),p F @?

17
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Note : L regular language implies
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From languages to counting

@ objective @ objective
count

=
bV (bab) b: {1} U3N

O

The game starts at v

The opponent chooses k (unknown to Gru)
While (true)

« Atvertex v, Gru chooses an action
S .
and opponent chooses an edge v —= v'with k € S

«  The game proceeds from v’

18



From languages to counting

@ objective @ objective
count

b; {1} U3N

Gru wins the language/original game iff he wins the counting game
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From counting to turn-based

knowledge games

@ objective (p objective
K: knowledge

K N S,: updated knowledge

Gru (Oval) chooses action
Vector (Box) chooses semi linear set

The game starts at (vy; N), and knowledge is updated
at each round

19
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From counting to turn-based

knowledge games

@ objective (p objective
K: knowledge

K N S,: updated knowledge

Gru wins the counting game iff he wins the knowledge game

Note : the complexity is that of solving turn-based knowledge games with objective ¢
Example: polynomial-time w.r.t. its size for Reachability objectives 19
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The results

Complexity results

The crowd controller problem is decidable and has the following complexity for
Reachability objectives:

Deterministic arenas . Non-deterministic arenas

PSPACE-complete

Reg/CF languages

» Each knowledge is an intersection of (atomic) constraints used in the game

» The number of possible knowledges is therefore at most exponential in the number of (atomic) constraints used in the game
« Semilinear sets: the knowledge game is at most exponential in the number of semilinear sets

» Finite unions of intervals: the knowledge game is at most exponential in the number of endpoints

Intervals: the knowledge game is quadratic in the number of endpoints of the intervals

v

21
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PSPACE algorithm - 2

Bottom-up tag of winning states
» Start at subgame with knowledge Kj:

e QObjective: @
e Tagwinning states with \/
e Taglosing states with X

»  Go to subgame with knowledge K5:

Objective: @ or Reach(\/)
Tag winning states with \/
Tag losing states with x

» EfC...

23
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PSPACE-hardness - 2
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- Either the game proceeds to x, (encoding true), and if k = 4, thengoto @

- Orthe game proceeds to X, (encoding false), and if k = 3, then go to @
Otherwise the game proceeds to v,
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PSPACE-hardness - 2

W = E|x1 sz 3)(:3 V.X4 . (xl Vv _'.X2 V _'.X3) AN (Xz Vv .X3 Vv _'.X4)

Strategy for Gru if y is true

» AtV, play the correct assignment, say false (i.e. a), reaching x;
o Ifk= 1,thengoto@
e Ifk # 1,the game proceeds to v,
At vy, play u (no choice — the next vertex is then choose non-deterministically):
- Either the game proceeds to x, (encoding true), and if k = 4, thengoto @

- Orthe game proceeds to X, (encoding false), and if k = 3, then go to @

- Otherwise the game proceeds to v,
EfC...

At C, k # 1,k # 4 (in thefirst case above), .... hence Gru can enforce @ if and only if the chosen
assignment makes the two clauses true
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PSPACE-hardness -3

QSAT formulay = Jx; VX, Ax; Vi, - (X V 7 V X)) A (X V X3V 1xy)

Y is true iff Gru has a winning strategy in the above counting game




Going further?



Going further?

» The previous approach yielding the PSPACE upper bounad
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved In
PSPACE

27



Going further?

» The previous approach yielding the PSPACE upper bounad
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved In
PSPACE

» What about more involved quantitative objectives/payoffs?

27



Going further?

» The previous approach yielding the PSPACE upper bounad
applies to many other Boolean objectives, as long as solving
the corresponding standard games can be achieved In
PSPACE

» What about more involved quantitative objectives/payoffs?

» \We believe the approach can be extended to « structured »
infinite-state systems (e.g. pushdown systems)

27



The coalition problem
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The coalition problem

» Input: parameterized game G = (V, 0) and linear property ¢
» Question: does there exist (6;);5 such that for every k, forevery p € Out((ai)lsisk),p F @?

\‘ \S\T“’*‘F‘W Vo=
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A winning coalition strategy

» Atroundi:

e Playeriplaysb

e Playerj # iplaysa
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An intriguing example

A winning coalition strategy

» Atroundi:

e Playeriplaysb
e Playerj # iplaysa

tk=1v,2©
hck:ZVOﬂ)VOa—b)@

baa aba aab
|fk:3:VO—)VO—)VO—)@
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An intriguing example

A winning coalition strategy

a*ba™
» Atroundi:
. a*b @ e Playeriplaysb
e Playerj # iplaysa
L \a*ba* » Atround i, coalition plays a'~'ba®

tk=1v,2©
hck:ZVOﬂ)VOa—b)@
baa aba aab

|fk:3:VO—)VO—)VO—)@
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Tree unfolding

LOO - a*ba*
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Tree unfolding

LOO - a*ba*
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Tree unfolding

There is a winning coalition strategy in the game iff there is a winning
coalition strategy in the unfolding
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Tree unfolding — Safety case

For a safety condition: the unfolding can be pruned 0

Possible solution:

Ly, = a*ba* - MO = aba®”
oyl =q? W
: P ge e
: 3 = ba®
[ iy - w=ba” 7
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Tree unfolding — Safety case

For a safety condition: the unfolding can be pruned 0

Possible solution:

L — *b %k
01 =avba - MO = aba®”
ul =q® V|
: _ Mz _ o
: 3 = ba®
[ iy - w=ba” 7
k B 1 a\ a\ b ...........
Loy, J g __ 'VO /V2 ,v1_>v0_>”.
N Ly sincea € Ly, a € Ly, b€ Lyo
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Tree unfolding — Safety case

For a safety condition: the unfolding can be pruned 0

Possible solution:

- u’=aba”
- u' =a” v ;
_ Mz — aa) -
- ud = ba?

RRE TS
M
+

a a b
b kzl:VO >V2 >V1—>VO_>...

sincea € Ly,,a € L,;,b € L,

(4
~

4
~
o~
t
|_

A 4

A 24

P A" aba*2 ak .
g 4 k> 1:V0—>V1—)V0_) oo 'VO_

since aba*~* € Ly, a* € Ly,
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Tree unfolding — Safety case

For a safety condition: the unfolding can be pruned 0

Possible solution:

L — *b ES
01 = avba - MO =aba®”
ul=qg? v |
: N,
: 3 — ha?®
[ s - =ba”
k . 1 d\ Cl\ b R
Lot ; » k=L o v oYy =
N R since a & Loz, a € L21: b € LIO

4 "' aba*2 ak
Q y» k> 1ivg—— v, — vy — ... VO

since aba*~* € Ly, a* € Ly,

There is a winning coalition strategy in the unfolding iff there are infinite words (ui)i S.t.

forevery k > 1, playing uik at each internal node ensures avoiding €

32
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automaton—1

We launch several computations in parallel:

/—\
S M
|
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Construction of a finite

automaton—1

We launch several computations in parallel:

/—\
S M
|
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Construction of a finite

automaton—1

We launch several computations in parallel:

This state is unsafe, due to the branch vovlg

(P accepting, s not accepting)
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Construction of a finite
automaton — 2




Construction of a finite
automaton — 2




Construction of a finite

automaton — 2

Unsafe

Safe word:
(a) /b\ (a\?

\b) \a)\4)

U =

—_ e
MM
N —
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Construction of a finite

automaton — 2

Unsafe Safe word:
(a) /b\ (a\?
_1%|lalla
U=1, 21 1a
\b) \a) \a,
u’ = aba®
ul = g®
Z I/l2 — aa)
5 u’ = ba®
>
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Unsafe

LOO = a*ba*

—_——
MM Q
N —

RRE TS
\g|
+

L d
~

A ’

.
~
o~ Tes
—_
—

There is a winning safe coalition strategy in the game iff there is an infinite

safe word in the constructed automaton
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The result

Decidability/complexity results

The safety coalition problem is decidable iIn EXPSPACE. [t s
PSPACE-hara.

» Upper bound: the size of the pruned unfolding can be exponential (and not
possible to consider a polynomial-size DAG instead)

» Lower bound: similar reduction as for the strong controller synthesis from
QSAT
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Going further?

» Understand the case of other objectives, starting with
Reachabllity

a*ba™

A winning coalition strategy

a*b
’@ » Atroundi:

v gt e Playeriplays b

e Playerj # iplaysa
Q » At round i, coalition plays @'~ 'ba®

v
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Going further?

» Understand the case of other objectives, starting with
Reachabllity

a*ba™

Q A winning coalition strategy
a*b
— ’@ » Atround i

e Playeriplaysb

>*\a*ba*

e Playerj # iplaysa

v

Q » At round i, coalition plays @'~ 'ba®

» Limits: undecidabillity if regular relations instead of regular
languages
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Undecidability under

rational relations

D — <

Det. Turing machine

«— Q.
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Undecidability under

rational relations

q
Det. Turing machine é

.
!
/
-
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Undecidability under

rational relations

A has no bounded execution iff the coalition can coordinate to reach &



Conclusion and further work
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Summary

» A concurrent parameterized game model
« To reason about an unbounded number of agents
« A natural extension of standard concurrent games
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Summary

» A concurrent parameterized game model
« To reason about an unbounded number of agents
« A natural extension of standard concurrent games

» Two natural problems under inspection:
« The crowd controller problem
« The coalition problem

40



41



» Some technical further work:
« Better understand the coalition problem
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» Some technical further work:
« Better understand the coalition problem

» Investigate solution concepts relevant to multiplayer games?
 Various notions of rational behaviors (e.g. equilibria)

» Integrate new features in the model for better modeling power
« Add partial information?
« |nfinite state space useful?
« More general structures than words”
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