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Purpose of this work

Design algorithms to estimate probabilities in some infinite-state 
Markov chains, with guarantees

Our contributions

‣ Review two existing approaches (approximation algorithm and estimation 
algorithm) and specify the required hypothesis for correctness 

‣ Propose an approach based on importance sampling and abstraction to 
partly relax the hypothesis 

‣ Analyze empirically the approaches
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Quantitative analysis of 
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[RKNP04] J. Rutten, M. Kwiatkowska, G. Norman, D. Parker. Mathematical techniques for analyzing concurrent and probabilistic systems (Monograph)

Compute ℙ( ⊧ F )s0

s1 s2
1/2

1/4

3/53/4

s3
1/2

s4

1/5

1/5

1/2

1

1/2



5

Quantitative analysis of 
Markov chains

[RKNP04] J. Rutten, M. Kwiatkowska, G. Norman, D. Parker. Mathematical techniques for analyzing concurrent and probabilistic systems (Monograph)

Compute ℙ( ⊧ F )s0

s1 s2
1/2

1/4

3/53/4

s3
1/2

s4

1/5

1/5

1/2

1

1/2

‣ Random walk of parameter :

, where  

‣ Does not always exist

p > 1/2
ℙsn(F ) = κn κ =

1 − p
p

Closed-form solution



5

Quantitative analysis of 
Markov chains

[RKNP04] J. Rutten, M. Kwiatkowska, G. Norman, D. Parker. Mathematical techniques for analyzing concurrent and probabilistic systems (Monograph)

Compute ℙ( ⊧ F )s0

s1 s2
1/2

1/4

3/53/4

s3
1/2

s4

1/5

1/5

1/2

1

1/2

‣
 

‣  
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Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }
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[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)
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ℙ(G¬ ) = ∏
i≥1
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‣ Example/counterexample:

Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }

• Recurrent random walk ( ): decisive 

• Transient random walk ( ): not decisive
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Return  + some confidence interval
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Termination, efficiency and 
guarantees

 is decisive from  w.r.t.        
iff 

a sampled path starting at  almost-surely hits         or     

𝒞 s0

s0

Termination (To our knowledge, never expressed like this)

+ efficiency if finite return time 
(«   is positive recurrent »)𝒞

Let , let . Then: ε, δ > 0 N ≥
8
ε2

log( 2
δ )

ℙ ( nN

N
− ℙ(F ) ≥

ε
2 ) ≤ δ

Empirical average

Guarantees: Hoeffding’s inequalities

Precision

Confidence value

: confidence interval[ nN

N
−

ε
2

;
nN

N
+

ε
2 ]
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What can we do for 
non-decisive Markov chains??
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[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12)
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Properties of the biased 
Markov chain

‣ The r.v. in  is distributed according to a Bernoulli distribution 
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Example
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Precision ε

‣ In Estim (SMC): doubling the 
precision impacts in square on 
computation time (slope  in this 
log-log scale)

2

‣ Importance sampling seems to 
improve the analysis time, both for 
Approx and Estim (no formal 
guarantee, though)

‣ There seems to be « a best  » 
(  here)

p
p = 0.6

‣ For that best , Approx behaves 
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applied?


