

école — — — normale — — supérieure — — paris — saclay — —

Beyond Decisiveness of Infinite Markov Chains

Benoît Barbot

Patricia Bouyer

Serge Haddad

LACL Université Paris-Est Créteil France LMF Université Paris-Saclay, CNRS, ENS Paris-Saclay France LMF Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Purpose of this work

Design algorithms to estimate probabilities in some **infinite-state** Markov chains, **with guarantees**

Purpose of this work

Design algorithms to estimate probabilities in some **infinite-state**Markov chains, **with guarantees**

Our contributions

- Review two existing approaches (approximation algorithm and estimation algorithm) and specify the required hypothesis for correctness
- Propose an approach based on importance sampling and abstraction to partly relax the hypothesis
- Analyze empirically the approaches

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Finite Markov chain

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

Finite Markov chain

Denumerable Markov chain (random walk of parameter 1/4)

Discrete-time Markov chain (DTMC)

 $\mathscr{C}=(S,s_0,\delta)$ with S at most denumerable, $s_0\in S$ and $\delta:S\to \mathrm{Dist}(S)$

+ effectivity conditions..

Finite Markov chain

Denumerable Markov chain (random walk of parameter 1/4)

Queues

Probabilistic pushdown automata

$$A \xrightarrow{1} C \qquad A \xrightarrow{n} BB \qquad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \qquad C \xrightarrow{1} C$$

Probabilistic pushdown automata

$$A \xrightarrow{1} C$$
 $A \xrightarrow{n} BB$ $B \xrightarrow{5} \varepsilon$

$$B \xrightarrow{n} AA$$
 $C \xrightarrow{1} C$

$$n \text{ is the height of the stack}$$

Probabilistic pushdown automata

Closed-form solution

Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Closed-form solution

Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error

Closed-form solution

Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_{s} = \begin{cases} 1 & \text{if } s = \bigcirc \\ 0 & \text{if } s \not\models \exists \mathbf{F} \bigcirc \\ \sum_{t} \mathbb{P}(s \to t) \cdot x_{t} & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error

No general method exists for infinite Markov chains

Closed-form solution

• Random walk of parameter p > 1/2:

$$\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$$
, where $\kappa = \frac{1-p}{p}$

Does not always exist

Apply a numerical method [RKPN04]

$$x_s = \begin{cases} 1 & \text{if } s = \circlearrowleft \\ 0 & \text{if } s \not\models \exists \mathbf{F} \circlearrowleft \\ \sum_t \mathbb{P}(s \to t) \cdot x_t & \text{otherwise} \end{cases}$$

- $\mathbb{P}_{s_0}(\mathbf{F} \odot) = 1/19$
- System must be finite
- Prone to numerical error
- No general method exists for infinite Markov chains
- Specific approaches for decisive Markov chains

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:

$$\mathbf{P}(\mathbf{G} \neg \mathbf{O}) = \prod_{i \geq 1} p_i$$

ullet Decisive iff this product equals 0

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

Decisiveness

A DTMC \mathscr{C} is decisive from s w.r.t. \bigcirc if $\mathbb{P}_s(\mathbf{F}\bigcirc\vee\mathbf{F}\bigcirc)=1$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:

- Recurrent random walk ($p \le 1/2$): decisive
- Transient random walk (p > 1/2): not decisive

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{ }}{m \cup}$

- ightharpoonup Aim: compute probability of ${f F}$ \bigodot

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \le \mathbb{P}(\mathbf{F}^{\circlearrowright}) \le 1 - p_1^{\text{no}}$$

ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_1^{\mathrm{no}}$$

In vi
$$p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_2^{\mathrm{no}}$$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$

Approximation scheme

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{o}}) \leq 1 - p_1^{\mathrm{no}}$$
 $|\mathbf{h}| \qquad \forall |\mathbf{f}| \qquad |\mathbf{f}| \qquad$

- ightharpoonup Aim: compute probability of ${f F}$ $\stackrel{ ext{$arphi}}{ ext{$arphi}}$
- $\Rightarrow = \{ s \in S \mid s \not\models \exists \mathbf{F} \circlearrowleft \}$

Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{oo}}) \leq 1 - p_1^{\mathrm{no}}$$

In vi

 $p_2^{\mathrm{yes}} \leq \mathbb{P}(\mathbf{F}^{\mathrm{oo}}) \leq 1 - p_2^{\mathrm{no}}$

In vi

In vi

At the limit:

$$\mathbb{P}(\mathbf{F} \overset{\smile}{\bigcirc})$$

$$1 - \mathbb{P}(\mathbf{F} \bigcirc)$$

Aim: compute probability of **F**

$$= \{ s \in S \mid s \not\models \exists \mathbf{F} \bigcirc \}$$

 \mathscr{C} is decisive from s_0 w.r.t. $\overset{\smile}{\smile}$ iff the approximation scheme converges

Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \odot) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\text{oo}}) \leq 1 - p_1^{\text{no}}$$

$$| \wedge \qquad \qquad \lor |$$

$$p_2^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\text{oo}}) \leq 1 - p_2^{\text{no}}$$

I∧ : ∨|

At the limit:

 $1 - \mathbb{P}(\mathbf{F} \overset{\boldsymbol{\bullet}}{\boldsymbol{\bullet}})$

Sample N paths

Sample N paths

Sample N paths

$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

Sample N paths

$$n_1 = 1$$

$$n_2 = n_1$$

$$n_3 = n_2 + 1$$

•

Sample N paths

Return
$$\frac{n_N}{N}$$
 + some confidence interval

Termination, efficiency and guarantees

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s_0 w.r.t. $\begin{cases} \begin{cases} \begi$

a sampled path starting at s_0 almost-surely hits $\stackrel{ ext{.}}{\bigcirc}$ or $\stackrel{ ext{.}}{\bigcirc}$

Termination, efficiency and guarantees

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\smile}$

a sampled path starting at s_0 almost-surely hits $\stackrel{ ext{.}}{ ext{.}}$ or $\stackrel{ ext{.}}{ ext{.}}$

+ efficiency if finite return time (« $\mathscr C$ is positive recurrent »)

Termination, efficiency and guarantees

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s_0 w.r.t. $\overline{\smile}$

a sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\smile}$ or $\stackrel{\smile}{\rightleftharpoons}$

+ efficiency if finite return time (« \mathscr{C} is positive recurrent »)

Guarantees: Hoeffding's inequalities

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Termination, efficiency and guarantees

Termination

(To our knowledge, never expressed like this)

 \mathscr{C} is decisive from s_0 w.r.t. $\stackrel{\smile}{\smile}$

a sampled path starting at s_0 almost-surely hits $\stackrel{\smile}{\smile}$ or $\stackrel{\smile}{\rightleftharpoons}$

+ efficiency if finite return time (« \mathscr{C} is positive recurrent »)

Guarantees: Hoeffding's inequalities

Empirical average

Let
$$\varepsilon, \delta > 0$$
, let $N \ge \frac{8}{\varepsilon^2} \log \left(\frac{2}{\delta}\right)$. Then:

$$\mathbb{P}\left(\left|\frac{n_N}{N} - \mathbb{P}(\mathbf{F} \odot)\right| \ge \frac{\varepsilon}{2}\right) \le \delta$$

Confidence value

Precision

$$\left[\frac{n_N}{N} - \frac{\varepsilon}{2}; \frac{n_N}{N} + \frac{\varepsilon}{2}\right]$$
: confidence interval

What can we do for non-decisive Markov chains??

Analyze a biased Markov chain \mathscr{C}'

Analyze a biased Markov chain \mathscr{C}'

Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

Analyze a biased Markov chain \mathscr{C}'

Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\smile}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Analyze a biased Markov chain \mathscr{C}'

Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\smile}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Originally used for rare events

It is sufficient to compute $\mathbb{E}_{\mathscr{C}'}(\gamma)$

Analyze a biased Markov chain \mathscr{C}'

Correct the bias

$$\gamma(\rho) = \begin{cases} rac{P(
ho)}{P'(
ho)} & \text{if $
ho$ ends in } \circlearrowleft \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\smile}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

- Originally used for rare events
- Setting giving statistical guarantees [BHP12,Bar14]

It is sufficient to compute $\mathbb{E}_{\mathscr{C}'}(\gamma)$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\bigcirc}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Define $\mu(s)$ as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \overset{\smile}{\smile})$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \ \bigcirc) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Define
$$\mu(s)$$
 as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \circlearrowleft) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

The r.v. in \mathscr{C} is distributed according to a Bernoulli distribution The r.v. in \mathscr{C}' is distributed according to an unknown distribution

Define
$$\mu(s)$$
 as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \circlearrowleft) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- The r.v. in $\mathscr C$ is distributed according to a Bernoulli distribution The r.v. in $\mathscr C'$ is distributed according to an unknown distribution
- lacktriangle The analysis of $\operatorname{\mathscr{C}}$ can be transferred to that of $\operatorname{\mathscr{C}}'$, provided some conditions on $\operatorname{\mathscr{C}}'$

Define
$$\mu(s)$$
 as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \circlearrowleft) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- The r.v. in \mathscr{C} is distributed according to a Bernoulli distribution The r.v. in \mathscr{C}' is distributed according to an unknown distribution
- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods

Define
$$\mu(s)$$
 as $\mathbb{P}^s_{\mathscr{C}}(\mathbf{F} \circlearrowleft) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- The r.v. in \mathscr{C} is distributed according to a Bernoulli distribution The r.v. in \mathscr{C}' is distributed according to an unknown distribution
- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - ullet Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required

Define
$$\mu(s)$$
 as $\mathbb{P}^s_\mathscr{C}(\mathbf{F}^{\ensuremath{\smile}})$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\boldsymbol{\bigcirc}}{\boldsymbol{\smile}}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

- The r.v. in \mathscr{C} is distributed according to a Bernoulli distribution The r.v. in \mathscr{C}' is distributed according to an unknown distribution
- lacktriangle The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - ullet Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required

There is a best choice:
$$p_i' = \frac{\mu(s_i)}{\mu(s)} \cdot p_i$$

- The r.v. in \mathscr{C}' takes value $\mu(s)$
- One needs to know μ !

- ▶ Model = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda: S \to \mathbb{N}$ s.t.
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite

- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} : \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda : S \to \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter p

- ▶ $\underline{\mathsf{Model}} = \mathsf{layered} \; \mathsf{Markov} \; \mathsf{chain} \; (\mathsf{LMC}) \; \mathscr{C} \; \mathsf{:} \; \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{level} \; \mathsf{function} \; \lambda \; \mathsf{:} \; S \; \to \; \mathbb{N} \; \mathsf{s.t.}$
 - for every $s_1 \to s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter p

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

- $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}
- lacktriangleright The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\begin{center} lacktriangleright$
- The expected time to sample an execution is finite

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

p-divergence

- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\overleftrightarrow{f \psi}$
- ▶ The expected time to sample an execution is finite

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

- *p*-divergence
- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\overleftrightarrow{f \psi}$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

p-divergence

- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\begin{cases} lacktriangle$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function \mathscr{L} s.t. for every $s \notin A$, $\mathscr{L}(s) \sum_{s'} P(s,s') \mathscr{L}(s') \geq \varepsilon$, then for all $s \notin A$, the expected timed to A is finite, implying that A is an attractor

Reached almost-surely

Theorem

Let $\mathscr C$ be an LMC with level function λ , $\mathscr C_p^{ullet}$ the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

 $m{\mathscr{C}}_p^{ullet}$ is an abstraction for \mathscr{C}

p-divergence

- lacktriangle The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\begin{cases} lacktriangle$
- ▶ The expected time to sample an execution is finite
- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function $\mathscr L$ s.t. for every $s \not\in A$, $\mathscr L(s) \sum_{s'} P(s,s') \mathscr L(s') \geq \varepsilon$, then for all $s \not\in A$, the expected timed to A is finite, implying that A is an attractor
- Apply this theorem to \mathscr{C}'

Reached almost-surely

Theorem

Let \mathscr{C} be an LMC with level function λ , \mathscr{C}_p^{\bullet} the random walk of parameter p. Assume

there is
$$N_0$$
 s.t. $\frac{1}{2} N_0\}$. Then:

- $\mathcal{C}_{p}^{\bullet}$ is an abstraction for \mathscr{C}
- The corresponding biased Markov chain \mathscr{C}' is decisive w.r.t. $\stackrel{\boldsymbol{\smile}}{\smile}$
- The expected time to sample an execution is finite

- Argument based on a variation on Foster's theorem:
 - If there is $\varepsilon > 0$ and a non-negative Lyapunov function \mathcal{L} s.t. for every $s \notin A$, $\mathscr{L}(s) - \sum P(s,s')\mathscr{L}(s') \geq \varepsilon$, then for all $s \notin A$, the expected timed to A is finite, implying

that A is an attractor

Apply this theorem to \mathscr{C}'

Reached almost-surely

Example

& is not decisive

 \mathscr{C}' is decisive

 Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is p-divergent

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If $\mathscr C$ is p-divergent
 - Use the abstraction \mathscr{C}_p^{ullet}

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\operatorname{\mathscr{C}}$
 - If \mathscr{C} is p-divergent
 - Use the abstraction \mathscr{C}_p^{ullet}
 - Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\mathscr C$
 - If \mathscr{C} is p-divergent
 - Use the abstraction \mathscr{C}_p^{ullet}

If \mathscr{C} is p-divergent, then \mathscr{C} is p'-divergent as soon as $1/2 < p' \le p$

- Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\mathscr C$
 - If \mathscr{C} is p-divergent
 - Use the abstraction \mathscr{C}_p^{ullet}

If \mathscr{C} is p-divergent, then \mathscr{C} is p'-divergent as soon as $1/2 < p' \le p$

Is there a best p?

Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If \mathscr{C} is decisive
 - Apply Approx and Estim on $\mathscr C$
 - If \mathscr{C} is p-divergent
 - Use the abstraction \mathscr{C}_p^{ullet}

If \mathscr{C} is p-divergent, then \mathscr{C} is p'-divergent as soon as $1/2 < p' \le p$

Is there a best p?

Apply Approx and Estim on corresponding \mathscr{C}_p' (computed on-the-fly)

Note: in all experiments, the confidence is set to 99~%

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack

It is decisive It is p-divergent for every 1/2

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack

It is decisive It is p-divergent for every 1/2

- State-free proba. pushdown automaton $\mathscr{C}: \{A \xrightarrow{1} C; A \xrightarrow{n} BB; B \xrightarrow{5} \varepsilon; B \xrightarrow{n} AA; C \xrightarrow{1} C\}$
- ightharpoonup Start from A, and target the empty stack

It is decisive It is p-divergent for every 1/2

- In Estim (SMC): doubling the precision impacts in square on computation time (slope 2 in this log-log scale)
- Importance sampling seems to improve the analysis time, both for Approx and Estim (no formal guarantee, though)
- There seems to be « a best p » (p = 0.6 here)
- For that best p, Approx behaves very well!

First example — continued

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- lack Start from A, and target the empty stack

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- \blacktriangleright Start from A, and target the empty stack

It is not decisive It is p-divergent for every 1/2

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- \blacktriangleright Start from A, and target the empty stack

It is not decisive

It is p-divergent for every 1/2

- State-free proba. pushdown automaton \mathscr{C} : $\{A \xrightarrow{1} B; A \xrightarrow{1} C; B \xrightarrow{10} \varepsilon; B \xrightarrow{10+n} AA; C \xrightarrow{10} A; C \xrightarrow{10+n} BB\}$
- lack Start from A, and target the empty stack

- Estim-SMC not too sensitive to p
 - Neverthess (log scale): clear bell effect on p
- Approx very sensitive to p

It is not decisive

It is p-divergent for every 1/2

Two approaches (numerical and statistical) for analysis of infinite Markov chains

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg$?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p »?

Any theoretical justification for that?

- ▶ Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a decisiveness assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)

A general low-level model (LMC) + application to prob. pushdown automata

- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a \ll best $p \gg$?

Any theoretical justification for that?

Some more classes to be applied?