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Markov chains, with guarantees

Our contributions

Review two existing approaches (approximation algorithm and estimation
algorithm) and specity the required hypothesis for correctness

Propose an approach based on importance sampling and abstraction to
partly relax the hypothesis

Analyze empirically the approaches
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Discrete-time Markov chains

Discrete-time Markov chain (DTMC)

C = (3, sy, 0) with S at most denumerable, s, € Sand o : § — Dist(S)

+ effectivity conditions...
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Quantitative analysis of
Markov chains

Closed-form solution

> Random walk of parameter p > 1/2: tfs= @
1 _ o
P, (F@) =1<”,vvherel<=—p " FEIF@
n D Zt[lj’(s — £) - x, otherwise

> Does not always exist [FDSO(F @) =1/19

System must be finite

Prone to numerical error

» NO general method exists for infinite Markov chains
» Specific approaches for decisive Markov chains
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Decisiveness

B =(seS|s FIFO)

Decisiveness

ADTMC € is decisive fromswrt. @ if P(FO) VF @) = 1

» Examples of decisive Markov chains: finite Markov chains, probabilistic lossy
channel systems, probabilistic VASS, noisy Turing machines, ...

» Example/counterexample:

« Recurrent random walk (p < 1/2): decisive

L=p L-p - Transient random walk (p > 1/2): not decisive
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[IN97] P. Ilyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97)
[ABMO7] PA. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007) 7
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Approximation scheme

Approximation scheme

Given € > 0, for every n, compute:

Use P(F., ©)
H:D(FSn Q)

. - IA
€ is decisive from sqwrt. © o v o
ff Py < PEFQ) < 1-pj
the approximation scheme converges A ,
: VI

Atthelimit  P(F©) 1 - P(F Q)
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Statistical model-checking

Sample N paths
nl —_

N )
N, = ny

'02 n3=n2+1

P3

N
Return — + some confidence interval
N
8
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guarantees

Termination (To our knowledge, never expressed like this)

@ is decisive from s, wrt. ©
i
a sampled path starting at s, almost-surely hits @ or Q

+ efficiency if finite return time
(« € is positive recurrent »)

Guarantees: Hoeffding’s inequalities

2
Lete, 0 > 0, let N > —log<g> Then:
g2

IP( %—P(F@) %) :




What can we do for
non-decisive Markov chains?”
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Importance sampling

» Analyze a biased Markov chain 6"’
Correct the bias

P
) = {% it p ends in ©

0 otherwise

151 G’

» Originally used for rare events
» Setting giving statistical guarantees [BHP12 Barl4]
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Properties of the biased
Markov chain

BEREYIOEE

P F &)

» Therv.in € is distributed according to a Bernoulli distribution
Therv. in "' is distributed according to an unknown distribution

» The analysis of € can be transferred to that of ‘€’ provided some conditions on 6"
e Decisiveness of €' is required for both approx. and estim. methods

e Boundedness of y is required

€ €'
(s)) p p
There is a best choice: p; = 'M( l) - D; 1
) ;
K %) , %)
» Therv.in €’ takes value p(s) 3
» One needs to know y! @ S_

[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12) 12
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Importance sampling

u" is the probability

via an abstraction oreah@n®

P,(Sl’ Sz) — P(Sl, S2) : M.(a(SZ))

p(a(sy))

D Plsy.59) p(alsy) < p(als))

Cannot
reach F

+ Monotony
condition

outside F a(s,)

a

—P a(sy)
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€ is not decisive €'’ is decisive
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»  State-free proba. pushdown automaton ¢:{A — C; A LBB:B2e:B5 AA C - C}
» Startfrom A, and target the empty stack

It is decisive
Itis p-divergent forevery 1/2 < p < 1

C SMC C' SMC p=0.6 C'SMC p=0.51 - O -
C AlgoDec C' AlgoDec p=0.6 C' AlgoDec p=0.51 —e—

[ ! ! ! ! ! ! I
= » In Estim (SMC): doubling the

] precision iImpacts in square on
computation time (slope 2 in this
log-log scale)

1000
100

10 ¢ E » Importance sampling seems to
] improve the analysis time, both for
Approx and Estim (no formal

guarantee, though)

Time(s)

0.1 ¢ »  There seems to be « a best p »

(p = 0.6 here)

0.01

0.1 0.01 »  Forthat best p, Approx behaves

Width
o very welll
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First example — continued

SMC 0.1 SMC 0.02 SMC 0.005 - -0 -

AlgoDec 0.1 AlgoDec 0.02 AlgoDec 0.005 —e—
A ! ! I I | I :
1000 ¢ E
100 = E
rCofR-o0----0---0--0--0-06-0 0 0-0 0 :
% 10 3 :
S = E
= i ]
TE o 3
0.1 = E
0.01 ! ' ' I I I | |

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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»  State-free proba. pushdown automaton 6:
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Second example
Experimental results

It Is not decisive
»  State-free proba. pushdown automaton 6: Itis p-divergentforevery 1/2 < p < 1

ALSBALSCBE ;B2 Aa. c B A c 2 BBy
»  Start from A, and target the empty stack

1000: : SMC 0.1
2 o o 6-0 0--0-0-0-070
: _.o-_-o---O--'O"e'o' ©-6© 3 AlgoDec 0.1
F %%-06--g--0-0-0--6-9-0 ]

© i
—~ 100 L ] SMC 0.02
2 5 1 AlgoDec 0.02
E

10 ¢ ~ SMC 0.005 - -o- -
X ] AlgoDec 0.005 —e—

0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Second example
Experimental results

It Is not decisive
»  State-free proba. pushdown automaton 6: Itis p-divergentforevery 1/2 < p < 1

ALSBALSCBE ;B2 Aa. c B A c 2 BBy
»  Start from A, and target the empty stack

1000: . SMC 0.1

3 _oO--0-0-0-00 3

- _o___o_--o---O--e-O"o"o'oeo 3 AlgoDec 0.1
[ ®°}-0--g--0-0-06--80-9-0 :

% 100 ¢ ] SMC 0.02
2 5 1 AlgoDec 0.02
=

10 ¢ ~ SMC 0.005 - -o- -
5 ] AlgoDec 0.005 —e—

0.55 0.6 0.65 0.7 0.75 0.8 0.85

»  Estim-SMC not too sensitive to p
« Neverthess (log scale): clear bell effect on p

»  Approx very sensitive to p

20



Conclusion

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata
» Interesting empirical results

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata
» Interesting empirical results

« Acceleration of the verification of decisive Markov chains in some cases?

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata
» Interesting empirical results
« Acceleration of the verification of decisive Markov chains in some cases”?

« Existence of a « best p »?

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata
» Interesting empirical results
« Acceleration of the verification of decisive Markov chains in some cases”?

« Existence of a « best p »?

21



Conclusion

» Two approaches (numerical and statistical) for analysis of infinite Markov chains
« Both require a decisiveness assumption!

» Use of importance sampling to handle some non-decisive Markov chains
« QOriginal application of the importance sampling idea

« Both approaches can be applied to the biased Markov chains
(conditions for correctness are given)

« A general low-level model (LMC) + application to prob. pushdown automata
» Interesting empirical results
« Acceleration of the verification of decisive Markov chains in some cases”?

« Existence of a « best p »?

21



