
Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

De l’analyse automatique de systèmes temporisés au
contrôle de systèmes dynamiques

Patricia Bouyer-Decitre

LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay

1/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-dependent systems

• We are interested in timed systems

• ... and in their analysis and control

2/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-dependent systems

• We are interested in timed systems

• ... and in their analysis and control

2/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

algorithm

yes/no

a?

b!

3/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

algorithm

yes/no

a?

b!

3/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)algorithm

yes/noa?

b!

3/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

model-checking

algorithm

yes/no

a?

b!

3/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Model-checking and control

system:

8 8
property:

a!
b?

a?
b! ? AG(¬B.overfull

∧ ¬B.dried up)

control/synthesis

algorithm

yes/no

a?

b!

3/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

5/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23

0 15.6 15.6 ···

y 0 23

23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0 23 0

15.6 15.6 ···

y 0 23 23

38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6

15.6 ···

y 0 23 23 38.6

0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe

2.3−−→ failsafe
repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6

17.9 17.9 40 40

0

2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9

17.9 40 40

0 2.3

0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6 17.9 17.9

40 40

0 2.3 0

22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40

40

0 2.3 0 22.1

22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

(clock) valuation

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The model of timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

(clock) valuation

This run reads the timed word
(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

6/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example

7/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the train crossing example

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, x i
:= 0

20 < xi < 30,a,xi := 0

10 < xi < 20,Exit!

8/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example – cont’d

The gate:

Open Lowering,Hg10

CloseRaising,Hg < 10

GoDown?,Hg := 0

Hg < 10,a

GoUp?,Hg := 0

Hg < 10,a

9/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example – cont’d

The controller:

c0c1,Hc ≤ 20 c2,Hc ≤ 10
App?,Hc := 0Exit?,Hc := 0

Exit? Exit?

App?Hc = 20,GoUp! Hc ≤ 10,GoDown!

App?

10/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example – cont’d

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App
. App! . App? App

Exit! . . Exit? Exit
. Exit! . Exit? Exit
a . . . a
. a . . a
. . a . a
. . GoUp? GoUp! GoUp
. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!

11/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example – cont’d

Some properties one could check:
• Is the gate closed when a train crosses the road?

• Is the gate always closed for less than 5 minutes?

12/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The train crossing example – cont’d

Some properties one could check:
• Is the gate closed when a train crosses the road?

• Is the gate always closed for less than 5 minutes?

12/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the task graph scheduling problem

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

13/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·

14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·

14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·

14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·

14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·

14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
• Can the computation be made in no more than 10 time units?

• Is there a scheduling along which no processor is ever idle?

• · · ·
14/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What we have so far
• A model which can adequately represent systems with real-time

constraint...

• ... on which we can ask relevant questions

Interesting problems
• Which semantics?

(and be aware of the limits of the choice)

• Algorithms for automatic verification

15/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What we have so far
• A model which can adequately represent systems with real-time

constraint...

• ... on which we can ask relevant questions

Interesting problems
• Which semantics?

(and be aware of the limits of the choice)

• Algorithms for automatic verification

15/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under continuous-time, the output can be 1:

t

i

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

Finding the correct granularity (if one exists) is hard!

16/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Can we reach state ?

• Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

• Positive key point: variables (clocks) increase at the same speed

18/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Can we reach state ?

• Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

• Positive key point: variables (clocks) increase at the same speed

18/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints
• “compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints

• “compatibility” between regions and time elapsing
; an equivalence of finite index

a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints
• “compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints
• “compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints
• “compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Crux idea: Region abstraction

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

• “compatibility” between regions and constraints
• “compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

19/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃ with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1 ∃ with v ′i ∈ Ri. . .

20/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

21/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

21/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

21/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The construction of the region graph

It “mimicks” the behaviours of the clocks.

0
0

1

1

2

2

y

x

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

22/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The construction of the region graph

It “mimicks” the behaviours of the clocks.

0
0

1

1

2

2

y

x

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

22/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))

23/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))

23/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))
23/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

24/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

24/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

24/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

• large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

• It can be used to check for:
• reachability/safety properties
• liveness properties (Büchi/ω-regular properties)
• LTL properties

• Problems with Zeno behaviours?
(infinitely many actions in bounded time)

25/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

• large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

• It can be used to check for:
• reachability/safety properties
• liveness properties (Büchi/ω-regular properties)
• LTL properties

• Problems with Zeno behaviours?
(infinitely many actions in bounded time)

25/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

• large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

• It can be used to check for:
• reachability/safety properties
• liveness properties (Büchi/ω-regular properties)
• LTL properties

• Problems with Zeno behaviours?
(infinitely many actions in bounded time)

25/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

• large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

• It can be used to check for:
• reachability/safety properties
• liveness properties (Büchi/ω-regular properties)
• LTL properties

• Problems with Zeno behaviours?
(infinitely many actions in bounded time)

25/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

26/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

26/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

26/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

Zeno cycles

26/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

Cycles with
non-Zeno behaviours

26/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Complexity issues

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[FJ13] Fearnley, Jurdziński. Reachability in two-clock timed automata is PSPACE-complete (ICALP’13).

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Skip

• PSPACE upper bound: guess a path in the region automaton

27/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Skip

• PSPACE upper bound: guess a path in the region automaton

27/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Skip

• PSPACE upper bound: guess a path in the region automaton

region R defined by: 0 < x < 1
0 < y < 1
y < x

0
0

1

1

2

2

y

x

27/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Skip

• PSPACE upper bound: guess a path in the region automaton

• PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

maximal number of cells in use: N

tape of M
cell Ci

a

xi ≤ 1

cell Cj

b

xj > 2

27/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Skip

• PSPACE upper bound: guess a path in the region automaton

• PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

maximal number of cells in use: N

tape of M
cell Ci

a

xi ≤ 1

cell Cj

b

xj > 2

27/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj≤4: cell j contains an a

constraint xj>4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

28/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj≤4: cell j contains an a

constraint xj>4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

28/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj≤4: cell j contains an a

constraint xj>4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

28/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj≤4: cell j contains an a

constraint xj>4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

28/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj≤4: cell j contains an a

constraint xj>4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

28/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The case of single-clock timed automata

0 1 2 3 4 5

0 2 5

if only constants 0, 2 and 5 are used

29/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The case of single-clock timed automata

0 2 5

if only constants 0, 2 and 5 are used

29/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Discussion

• This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:
• various extensions of timed automata

• model-checking of branching-time properties (TCTL, timed
µ-calculus)

• weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

• o-minimal hybrid systems

• · · ·

• Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0 x1 x2

x0

x1

x2

Ñ
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

é
DBM: Difference Bound

Matrice [BM83,Dill89]

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0

x1 x2

−3 +5

+4

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0

x1 x2

−3
9

4

2
0

5

0

0 0

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

94

2

x0 x1 x2

x0

x1

x2

Ñ
0 −3 0
9 0 4
5 2 0

é
“normal form”

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What about the practice?

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).
[GMS19] Gastin, Mukherjee, Srivathsan. Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19).
[RSM19] Roussanaly, Sankur, Markey. Abstraction Refinement Algorithms for Timed Automata (CAV’19).
[HSTW20] Herbreteau, Srivasthsan, Tran, Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It

ACM Transactions on Computational Logic.
[GMS20] Gastin, Mukherjee, Srivathsan. Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20).

• the region automaton is never computed

• instead, symbolic computations are performed

• Symbolic representation: zones

• Needs of (correct) extrapolation operators... [Bou04,BBLP06]

• ... or clever inclusion tests or simulation relations
[HSW12,HSW13,GMS19,HSTW20]

• ... as well as abstraction-refinement techniques [RSM19]

• ... and a good static analysis approach [GMS20]

31/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c

• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well

• more involved updates can be used as well, but they don’t interact
very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c

• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well

• more involved updates can be used as well, but they don’t interact
very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c

• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well

• more involved updates can be used as well, but they don’t interact
very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c
• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well

• more involved updates can be used as well, but they don’t interact
very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c
• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well

• more involved updates can be used as well, but they don’t interact
very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Before going further...

Which hypotheses did we make?
• timestamps taken in R+ (continuous-time semantics): only density

is important, and they can be taken in Q+

• constants in clock constraints x ∼ c : c ∈ N; they could be taken in
Q+, but not in R+!

• clock constraints of the form x ∼ c
• x − y ∼ c are fine as well
• no other kind of clock constraints!

• resets of clocks to 0 only; we can reset to integral values as well
• more involved updates can be used as well, but they don’t interact

very well with diagonal constraints. So one needs to be careful

32/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Limits of the model

• Any slight extension of the model is undecidable:
• Richer clock constraints x + y = c, 2x ≤ y
• Richer updates: x := x + 1
• ...

• The inclusion problem
L(A) ⊆ L(B)

is undecidable [AD94]

• One cannot complement nor determinize timed automata

s0 s1 s2
a, x := 0 x = 1, a

a a a

33/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Limits of the model

• Any slight extension of the model is undecidable:
• Richer clock constraints x + y = c, 2x ≤ y
• Richer updates: x := x + 1
• ...

• The inclusion problem
L(A) ⊆ L(B)

is undecidable [AD94]

• One cannot complement nor determinize timed automata

s0 s1 s2
a, x := 0 x = 1, a

a a a

33/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Limits of the model

• Any slight extension of the model is undecidable:
• Richer clock constraints x + y = c, 2x ≤ y
• Richer updates: x := x + 1
• ...

• The inclusion problem
L(A) ⊆ L(B)

is undecidable [AD94]

• One cannot complement nor determinize timed automata

s0 s1 s2
a, x := 0 x = 1, a

a a a

33/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An important issue: Robustness and implementability

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP’13).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

34/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An important issue: Robustness and implementability

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP’13).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

34/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An important issue: Robustness and implementability

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP’13).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

34/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An important issue: Robustness and implementability

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP’13).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

34/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An important issue: Robustness and implementability

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP’13).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

34/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Theoretical recent developments

[AGK16] Akshay, Gastin, Krishna. Analyzing Timed Systems Using Tree Automata (CONCUR’16).
[AGKS17] Akshay, Gastin, Krishna, Sarkar. Towards an Efficient Tree Automata based technique for Timed Systems (CONCUR’17).

[CJ99] Comon, Jurski. Timed Automata and the Theory of Real Numbers (CONCUR’99).
[QSW17] Quaas, Shirmohammadi, Worrell. Revisiting Reachability in Timed Automata (LICS’17).

• Tree automata technics for timed automata analysis
[AGK16,AGKS17]

• Write behaviours as graphs with timing constraints
• Realize that those graphs have bounded tree-width
• Express properties using MSO and/or build directly tree automata

• Compute and use the reachability relation [CJ99,QSW17]

35/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Theoretical recent developments

[AGK16] Akshay, Gastin, Krishna. Analyzing Timed Systems Using Tree Automata (CONCUR’16).
[AGKS17] Akshay, Gastin, Krishna, Sarkar. Towards an Efficient Tree Automata based technique for Timed Systems (CONCUR’17).
[CJ99] Comon, Jurski. Timed Automata and the Theory of Real Numbers (CONCUR’99).
[QSW17] Quaas, Shirmohammadi, Worrell. Revisiting Reachability in Timed Automata (LICS’17).

• Tree automata technics for timed automata analysis
[AGK16,AGKS17]

• Write behaviours as graphs with timing constraints
• Realize that those graphs have bounded tree-width
• Express properties using MSO and/or build directly tree automata

• Compute and use the reachability relation [CJ99,QSW17]

35/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

36/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the task-graph scheduling problem

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

37/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the task-graph scheduling problem

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

How to model energy consumption?

37/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

38/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok...

but?

Easy... Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok... but?

Easy... Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Ok... but?

Easy... Easy...

constraint

constraint

Hard!

39/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

• An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

40/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

• System resources might be relevant and even crucial information

• energy consumption,

• memory usage,

• ...

• price to pay,

• bandwidth,

; timed automata are not powerful enough!

• A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

• An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

40/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

• Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

• Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

41/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

• Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

• Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A good schedule is a path in the
product automaton with a low cost

41/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

42/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

• Technical tool: a refinement of the regions, the corner-point
abstraction

3 0 0
0

0 0 3
7

7

43/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

3
0 0

0

0 0
3

7

7

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Technical tool: the corner-point abstraction

3
0 0

0

0 0
3

7

7

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

44/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···



t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···



t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

 t1+t2≤2

T2≤2

t2+t3+t4≥5 T4−T1≥5

x≤2

y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

 t1+t2≤2

T2≤2

t2+t3+t4≥5

T4−T1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

 t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

 t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

 t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

45/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

46/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0,

there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

46/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

46/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

46/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Use of the corner-point abstraction

[BBL04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC’04).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).
[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP’11).
[Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS’12).

It is a very interesting abstraction, that can be used in several other
contexts:

• for mean-cost optimization [BBL04,BBL08]

• for discounted-cost optimization [FL08]

• for all concavely-priced timed automata [JT08]

• for deciding frequency objectives [BBBS11,Sta12]

• . . .
Skip

47/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

48/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

48/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.478

48/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

Theorem [BBL08]

In weighted timed automata, the optimal mean-cost can be compute in
PSPACE.

; the corner-point abstraction can be used

48/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
∑n

i=1 ci ti + c∑n
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp s.t.
mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

49/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
∑n

i=1 ci ti + c∑n
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp s.t.
mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

49/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
∑n

i=1 ci ti + c∑n
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp s.t.
mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

49/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
∑n

i=1 ci ti + c∑n
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp s.t.
mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!
49/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |mean-cost(Π)−mean-cost(πε)| < η

50/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0,

there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |mean-cost(Π)−mean-cost(πε)| < η

50/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |mean-cost(Π)−mean-cost(πε)| < η

50/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |mean-cost(Π)−mean-cost(πε)| < η

50/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 2: concavely-priced cost functions

[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).

; A general abstract framework for quantitative timed systems

Theorem [JT08]

In concavely-priced timed automata, optimal cost is computable, if we
restrict to quasi-concave cost functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

• optimal-time and optimal-cost reachability;

• optimal discrete discounted cost;

• optimal mean-cost.

; the corner-point abstraction can be used

51/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

discounted-costλ(π) =
∑
n≥0

λTn

∫ τn+1

t=0

λtcost(`n)dt+λTn+1 cost(`n
an+1−−→ `n+1)

if π = (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · and Tn =
∑

i≤n τi

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

0 3 6 7 9

if λ = e−1, the discounted cost of
that infinite schedule is ≈ 2.16

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FL08]

In weighted timed automata, the optimal discounted cost is computable
in EXPTIME.

; the corner-point abstraction can be used

52/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

And symbolically?

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV’16).

• Non-obvious in general...

• Only for optimal reachability

Priced zones
priced zone = zone + affine cost function

, efficient representation: DBM + offset cost + affine coefficient for
each clock

x

y

Z

ζ = 2− x + 2y

offset

Represented by: zone Z
offset cost: +4
rate for x : −1
rate for y : +2

53/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

And symbolically?

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV’16).

• Non-obvious in general...

• Only for optimal reachability

Priced zones
priced zone = zone + affine cost function

, efficient representation: DBM + offset cost + affine coefficient for
each clock

x

y

Z

ζ = 2− x + 2y

offset

Represented by: zone Z
offset cost: +4
rate for x : −1
rate for y : +2

53/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

And symbolically?

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV’16).

• Non-obvious in general...

• Only for optimal reachability

Priced zones
priced zone = zone + affine cost function

, efficient representation: DBM + offset cost + affine coefficient for
each clock

x

y

Z

ζ = 2− x + 2y
offset

Represented by: zone Z
offset cost: +4
rate for x : −1
rate for y : +2

53/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Results

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test vM on priced zones

• ZvMZ ′ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with inclusion test vM is correct and terminates
for timed automata with some conditions on the cost.
It is always better than standard inclusion for bounded timed automata.

54/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Results

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).
[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test vM on priced zones

• ZvMZ ′ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with inclusion test vM is correct and terminates
for timed automata with some conditions on the cost.
It is always better than standard inclusion for bounded timed automata.

54/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Results

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).
[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test vM on priced zones

• ZvMZ ′ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with inclusion test vM is correct and terminates
for timed automata with some conditions on the cost.
It is always better than standard inclusion for bounded timed automata.

54/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Results

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).
[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test vM on priced zones

• ZvMZ ′ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with inclusion test vM is correct and terminates
for timed automata with some conditions on the cost.
It is always better than standard inclusion for bounded timed automata.

54/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1
lost!

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”

“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1
lost!

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”

“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Further problems: Energy management

Example

`0

−3

`1

+6

`2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

• Lower-bound problem (L)

• Lower-and-upper-bound problem (L+U)

• Lower-and-weak-upper-bound problem (L+W)

Skip energy management 55/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x=ε
e∼1

+6

x=ε
e∼1

+6

x=1−ε
e∼7

−6

x=1−ε
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x=ε
e∼1

+6

x=ε
e∼1

+6

x=1−ε
e∼7

−6

x=1−ε
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x=ε
e∼1

+6

x=ε
e∼1

+6

x=1−ε
e∼7

−6

x=1−ε
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x=ε
e∼1

+6

x=ε
e∼1

+6

x=1−ε
e∼7

−6

x=1−ε
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

Idea: delay in the most profitable location
; the corner-point abstraction

Theorem [BFLMS08]

The corner-point abstraction is sound and complete for single-clock WTA
with no discrete costs. Hence the existential L-problem is in PTIME in
that case.

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

; requires new developments!

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

{1},1

{1},1

0 +2 0

0 +4 0

−3 −3 −3 −3

0

+2

; requires new developments!

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost!

0
0

1 2 3 4

1

2

3

4

; requires new developments!

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost! 0
0

1 2 3 4

1

2

3

4

; requires new developments!

56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost! 0
0

1 2 3 4

1

2

3

4

; requires new developments!56/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2

0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + δ

1
2 −

δ
3

1
2

δ
3

final credit
8 + 8

3δ
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + δ

0 1
2 −

δ
6

1
2 + δ

6

final credit
12 + 8

6δ

initial credit
5

0 0 1
final credit

16

initial credit
5 + δ

0 0 1
final credit

16 + δ

• compute optimal delays topt in `1 to `n−1;

• compute optimal possible delays t∗ in `1 to `n−1;

• compute other points on the energy function curve.

57/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

58/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

The L-problem: concluding

Theorem
Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

• transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

• check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

59/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

60/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Why (timed) games?

• to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

• to model an interaction with the environment

Example of the gate in the train/gate example

?

61/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Why (timed) games?

• to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

• to model an interaction with the environment

Example of the gate in the train/gate example

?

61/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Why (timed) games?

• to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

• to model an interaction with the environment

Example of the gate in the train/gate example

?

61/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Why (timed) games?

• to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

• to model an interaction with the environment

Example of the gate in the train/gate example

?

61/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Why (timed) games?

• to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

• to model an interaction with the environment

Example of the gate in the train/gate example

?

61/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

• Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

• Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

62/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

• Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

• Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

62/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Modelling the task graph scheduling problem

• Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

• Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

• Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

• Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

62/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,

• How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

• from (`0, 0), play (0.5, c1)

; can be preempted by u2

• from (`2, ?), play (1− ?, c2)

• from (`3, 1), play (0, c3)

• from (`1, 1), play (1, c4)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

• from (`0, 0), play (0.5, c1)
; can be preempted by u2

• from (`2, ?), play (1− ?, c2)

• from (`3, 1), play (0, c3)

• from (`1, 1), play (1, c4)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

• from (`0, 0), play (0.5, c1)
; can be preempted by u2

• from (`2, ?), play (1− ?, c2)

• from (`3, 1), play (0, c3)

• from (`1, 1), play (1, c4)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

• from (`0, 0), play (0.5, c1)
; can be preempted by u2

• from (`2, ?), play (1− ?, c2)

• from (`3, 1), play (0, c3)

• from (`1, 1), play (1, c4)

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

• from (`0, 0), play (0.5, c1)
; can be preempted by u2

• from (`2, ?), play (1− ?, c2)

• from (`3, 1), play (0, c3)

• from (`1, 1), play (1, c4)
63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered

• Does there exist a winning strategy?

• If yes, compute one (as simple as possible).

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
• Does there exist a winning strategy?

• If yes, compute one (as simple as possible).

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game
• Aim: avoid / and reach ,
• How do we play? According to a

strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
• Does there exist a winning strategy?

• If yes, compute one (as simple as possible).

63/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

64/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

64/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP’07).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

64/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

65/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability via attractors

Skip attractors

• Preda(X) = {• | • a−→ • ∈ X}
• controllable and uncontrollable discrete predecessors:

cPred(X) =
⋃

a cont.
Preda(X) uPred(X) =

⋃
a uncont.

Preda(X)

• time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

66/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability via attractors

• Preda(X) = {• | • a−→ • ∈ X}

• controllable and uncontrollable discrete predecessors:

cPred(X) =
⋃

a cont.
Preda(X) uPred(X) =

⋃
a uncont.

Preda(X)

• time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

66/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability via attractors

• Preda(X) = {• | • a−→ • ∈ X}

• controllable and uncontrollable discrete predecessors:

cPred(X) =
⋃

a cont.
Preda(X) uPred(X) =

⋃
a uncont.

Preda(X)

• time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

66/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability via attractors

• Preda(X) = {• | • a−→ • ∈ X}

• controllable and uncontrollable discrete predecessors:

cPred(X) =
⋃

a cont.
Preda(X) uPred(X) =

⋃
a uncont.

Preda(X)

• time controllable predecessors:

• •
delay t t.u.
•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

66/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Decidability via attractors

• Preda(X) = {• | • a−→ • ∈ X}

• controllable and uncontrollable discrete predecessors:

cPred(X) =
⋃

a cont.
Preda(X) uPred(X) =

⋃
a uncont.

Preda(X)

• time controllable predecessors:

• •
delay t t.u.
•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

66/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .
• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .
• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .
• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .

• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .
• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Timed games with a reachability objective

We write:
π(X) = X ∪ Predδ(cPred(X),¬uPred(¬X))

• The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

• The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

• . . .
• The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))
= πn(,)

67/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions?

Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions?

Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions?

Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions?

Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions?

Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions? Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions? Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions? Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Stability w.r.t. regions

• if X is a union of regions, then:
• Preda(X) is a union of regions,
• and so are cPred(X) and uPred(X).

• Does π also preserve unions of regions? Yes!

cPred(X)

uPred(¬X)

Predδ(cPred(X),¬uPred(¬X))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!
... and is correct

68/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

And in practice?

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR’05).
[BCD+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV’07).

• A zone-based forward algorithm with backtracking
[CDF+05,BCD+07]

69/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

70/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple

weighted

timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

71/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).
[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).
[BMR17] Busatto-Gaston, Monmege, Reynier. Optimal Reachability in Divergent Weighted Timed Games (FoSSaCS’17).
[BMR18] Busatto-Gaston, Monmege, Reynier. Symbolic Approximation of Weighted Timed Games (FSTTCS’18).
[MPR20] Monmege, Parreaux, Reynier. Reaching Your Goal Optimally by Playing at Random with No Memory (CONCUR’20).

This topic has been fairly hot these since the 2000’s
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11]

[HIM13,BGK+14,BJM15,BMR17,BMR18,MPR20]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

72/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).
[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).
[BMR17] Busatto-Gaston, Monmege, Reynier. Optimal Reachability in Divergent Weighted Timed Games (FoSSaCS’17).
[BMR18] Busatto-Gaston, Monmege, Reynier. Symbolic Approximation of Weighted Timed Games (FSTTCS’18).
[MPR20] Monmege, Parreaux, Reynier. Reaching Your Goal Optimally by Playing at Random with No Memory (CONCUR’20).

This topic has been fairly hot these since the 2000’s
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11]

[HIM13,BGK+14,BJM15,BMR17,BMR18,MPR20]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

72/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).
[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).
[BMR17] Busatto-Gaston, Monmege, Reynier. Optimal Reachability in Divergent Weighted Timed Games (FoSSaCS’17).
[BMR18] Busatto-Gaston, Monmege, Reynier. Symbolic Approximation of Weighted Timed Games (FSTTCS’18).
[MPR20] Monmege, Parreaux, Reynier. Reaching Your Goal Optimally by Playing at Random with No Memory (CONCUR’20).

This topic has been fairly hot these since the 2000’s
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11]

[HIM13,BGK+14,BJM15,BMR17,BMR18,MPR20]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

72/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

73/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

73/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

• Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

• By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

• Rather involved proofs of correctness

74/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

• Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

• By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

• Rather involved proofs of correctness

74/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

• Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

• By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

• Rather involved proofs of correctness

74/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

• Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

• By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

• Rather involved proofs of correctness

74/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

• Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

• By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

• Rather involved proofs of correctness

74/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

75/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

• In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

• if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

• Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

76/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ü
x= 1

2c1

y= 1
2c2

z=?

êu:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ü
x= 1

2c1

y= 1
2c2

z=?

êu:=0 Ü
x= 1

2c1
+α

y= 1
2c2

+α

z=0

êz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ü
x= 1

2c1

y= 1
2c2

z=?

êu:=0 Ü
x= 1

2c1
+α

y= 1
2c2

+α

z=0

êz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ü
x= 1

2c1

y= 1
2c2

z=α

êu=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
• each instruction is encoded as a module;
• the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ü
x= 1

2c1

y= 1
2c2

z=?

êu:=0 Ü
x= 1

2c1
+α

y= 1
2c2

+α

z=0

êz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ü
x= 1

2c1

y= 1
2c2

z= 1

2c1+1

êu=1,u:=0

Testy (x=2z)

77/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Shape of the reduction

;

Instruction

Test module (acyclic) Cost 0 within the core of the game

78/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Shape of the reduction

;

Instruction

Test module (acyclic)

Cost 0 within the core of the game

78/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Shape of the reduction

;

Instruction

Test module (acyclic) Cost 0 within the core of the game

78/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Some further subtlety

Skip

Value of the game = infimum of all costs of strategies

The value of the game is 3, but no strategy has cost 3.

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

79/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Some further subtlety

Skip

Value of the game = infimum of all costs of strategies

The value of the game is 3, but no strategy has cost 3.

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

79/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Some further subtlety

Skip

Value of the game = infimum of all costs of strategies

The value of the game is 3, but no strategy has cost 3.

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

79/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A snapshot on the undecidability proof

;

Leave

Leave

Leave

Leave

Leave

Leave

Instruction

Test module

Leave with cost 3 + 1/2n (n: length of the path)

M does not halt iff the
value of GM is 3

80/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A snapshot on the undecidability proof

;

Leave

Leave

Leave

Leave

Leave

Leave

Instruction

Test module

Leave with cost 3 + 1/2n (n: length of the path)

M does not halt iff the
value of GM is 3

80/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A snapshot on the undecidability proof

;

Leave

Leave

Leave

Leave

Leave

Leave

Instruction

Test module

Leave with cost 3 + 1/2n (n: length of the path)

M does not halt iff the
value of GM is 3

80/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A snapshot on the undecidability proof

;

Leave

Leave

Leave

Leave

Leave

Leave

Instruction

Test module

Leave with cost 3 + 1/2n (n: length of the path)

M does not halt iff the
value of GM is 3

80/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Are we done?

No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

• Almost-optimality in practice should be sufficient

• Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

81/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

• Almost-optimality in practice should be sufficient

• Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

81/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

• Almost-optimality in practice should be sufficient

• Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

81/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

• Almost-optimality in practice should be sufficient

• Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

81/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

• Almost-optimality in practice should be sufficient

• Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

81/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

• two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

• one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

• Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

82/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

• two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

• one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

• Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

82/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

• two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

• one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Skip approximation scheme

• Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

82/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

• two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

• one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

• Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

82/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

• two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

• one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

• Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)
82/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea for approximation

Idea
Only partially unfold the game:

• Keep components with cost 0 untouched – we call it the kernel

• Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0

83/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea for approximation

Idea
Only partially unfold the game:

• Keep components with cost 0 untouched – we call it the kernel

• Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0

83/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea of the proof: Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps

84/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea of the proof: Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps

84/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea of the proof: Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps

84/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea of the proof: Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps

84/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Idea of the proof: Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps

84/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation scheme

Exact computation

Approximation

85/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation scheme

Exact computation

Approximation

85/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation scheme

Exact computation

Approximation

85/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation scheme

Exact computation

Approximation

85/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Approximation scheme

Exact computation

Approximation

85/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) =

inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(
(α),

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(
(α), (β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

86/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

87/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

87/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

87/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

87/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

87/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε

4 Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

88/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε

4 Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

88/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε

4 Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

88/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

fε: constant fε: constant

constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε

4 Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

88/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Second step: Kernels

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε

4 Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

88/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

89/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

Tchecker url: https://github.com/ticktac-project/tchecker

• Many tools and prototypes everywhere on earth...

• Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

• Our first tool TiAMo (Timed Automata Model-checker), developed
in 2016 by Maximilien Colange (formerly at LSV), using code by
Ocan Sankur (IRISA, France)

• The new tool Tchecker, developed within ANR Ticktac project
mostly by Frédéric Herbreteau (LaBRI), Ocan Sankur (IRISA),
Gérald Point (LaBRI), Philipp Schlehuber-Caissier (LRDE) and
Alexandre Duret-Lutz (LRDE)

http://www.irisa.fr/sumo/ticktac/

90/103

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://github.com/ticktac-project/tchecker
http://www.irisa.fr/sumo/ticktac/

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

Tchecker url: https://github.com/ticktac-project/tchecker

• Many tools and prototypes everywhere on earth...

• Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995
• Uppaal for timed automata
• Uppaal-TiGa for timed games
• Uppaal-Cora for weighted timed automata

• Our first tool TiAMo (Timed Automata Model-checker), developed
in 2016 by Maximilien Colange (formerly at LSV), using code by
Ocan Sankur (IRISA, France)

• The new tool Tchecker, developed within ANR Ticktac project
mostly by Frédéric Herbreteau (LaBRI), Ocan Sankur (IRISA),
Gérald Point (LaBRI), Philipp Schlehuber-Caissier (LRDE) and
Alexandre Duret-Lutz (LRDE)

http://www.irisa.fr/sumo/ticktac/

90/103

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://github.com/ticktac-project/tchecker
http://www.irisa.fr/sumo/ticktac/

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

Tchecker url: https://github.com/ticktac-project/tchecker

• Many tools and prototypes everywhere on earth...

• Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

• Our first tool TiAMo (Timed Automata Model-checker), developed
in 2016 by Maximilien Colange (formerly at LSV), using code by
Ocan Sankur (IRISA, France)

• The new tool Tchecker, developed within ANR Ticktac project
mostly by Frédéric Herbreteau (LaBRI), Ocan Sankur (IRISA),
Gérald Point (LaBRI), Philipp Schlehuber-Caissier (LRDE) and
Alexandre Duret-Lutz (LRDE)

http://www.irisa.fr/sumo/ticktac/

90/103

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://github.com/ticktac-project/tchecker
http://www.irisa.fr/sumo/ticktac/

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

Tchecker url: https://github.com/ticktac-project/tchecker

• Many tools and prototypes everywhere on earth...

• Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

• Our first tool TiAMo (Timed Automata Model-checker), developed
in 2016 by Maximilien Colange (formerly at LSV), using code by
Ocan Sankur (IRISA, France)

• The new tool Tchecker, developed within ANR Ticktac project
mostly by Frédéric Herbreteau (LaBRI), Ocan Sankur (IRISA),
Gérald Point (LaBRI), Philipp Schlehuber-Caissier (LRDE) and
Alexandre Duret-Lutz (LRDE)

http://www.irisa.fr/sumo/ticktac/

90/103

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://github.com/ticktac-project/tchecker
http://www.irisa.fr/sumo/ticktac/

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

Tchecker url: https://github.com/ticktac-project/tchecker

• Many tools and prototypes everywhere on earth...

• Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

• Our first tool TiAMo (Timed Automata Model-checker), developed
in 2016 by Maximilien Colange (formerly at LSV), using code by
Ocan Sankur (IRISA, France)

• The new tool Tchecker, developed within ANR Ticktac project
mostly by Frédéric Herbreteau (LaBRI), Ocan Sankur (IRISA),
Gérald Point (LaBRI), Philipp Schlehuber-Caissier (LRDE) and
Alexandre Duret-Lutz (LRDE)

http://www.irisa.fr/sumo/ticktac/

90/103

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://github.com/ticktac-project/tchecker
http://www.irisa.fr/sumo/ticktac/

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

91/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Very refreshing collaboration with Nicolas Markey (LSV at
that time, now at IRISA), Nicolas Perrin (ISIR) and Philipp

Schlehuber-Caissier (ISIR at that time, now at LRDE)

92/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example problem, objective and approach

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed Automata Abstraction of Switched Dynamical Systems Using Control Funnels.
Real-Time Systems, 2017.

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

• Infinitely many configurations

• Complex behaviour

• Mechanical constraints

Goal: Synthesize a controller:

• Which robot handles an object

• How to avoid collision

• Don’t miss any object

Approach:

• Discretization of the behaviour
via a fixed set of continuous
controllers

• Create an abstraction and use
previous results

93/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example problem, objective and approach

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed Automata Abstraction of Switched Dynamical Systems Using Control Funnels.
Real-Time Systems, 2017.

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

• Infinitely many configurations

• Complex behaviour

• Mechanical constraints

Goal: Synthesize a controller:

• Which robot handles an object

• How to avoid collision

• Don’t miss any object

Approach:

• Discretization of the behaviour
via a fixed set of continuous
controllers

• Create an abstraction and use
previous results

93/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example problem, objective and approach

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed Automata Abstraction of Switched Dynamical Systems Using Control Funnels.
Real-Time Systems, 2017.

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

• Infinitely many configurations

• Complex behaviour

• Mechanical constraints

Goal: Synthesize a controller:

• Which robot handles an object

• How to avoid collision

• Don’t miss any object

Approach:

• Discretization of the behaviour
via a fixed set of continuous
controllers

• Create an abstraction and use
previous results

93/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example problem, objective and approach

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed Automata Abstraction of Switched Dynamical Systems Using Control Funnels.
Real-Time Systems, 2017.

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

• Infinitely many configurations

• Complex behaviour

• Mechanical constraints

Goal: Synthesize a controller:

• Which robot handles an object

• How to avoid collision

• Don’t miss any object

Approach:

• Discretization of the behaviour
via a fixed set of continuous
controllers

• Create an abstraction and use
previous results

93/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Our approach

Simplistic idea: fixed set of reference trajectories + property

Corresponding timed automaton:

P1

(t ∈ I1)

P2

(t ∈ I2)
,

t = a12

t := c12

t = a21

t := c21

a ≤ t ≤ b

94/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Our approach

Simplistic idea: fixed set of reference trajectories + property

Corresponding timed automaton:

P1

(t ∈ I1)

P2

(t ∈ I2)
,

t = a12

t := c12

t = a21

t := c21

a ≤ t ≤ b

94/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Our approach

More realistic idea: fixed set of funnels for control law + property

Corresponding timed automaton:

F1

(t ∈ I1)

F2

(t ∈ I2)
,

a12 ≤ t ≤ b12

t := c12

a21 ≤ t ≤ b21

t := c21

a ≤ t ≤ b

94/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Our approach

More realistic idea: fixed set of funnels for control law + property

Corresponding timed automaton:

F1

(t ∈ I1)

F2

(t ∈ I2)
,

a12 ≤ t ≤ b12

t := c12

a21 ≤ t ≤ b21

t := c21

a ≤ t ≤ b

94/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Control funnels

System with continuous dynamics ẋ = f (x , t)

x1

x 2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

∀t0 ∈ R, x(t0) ∈ F(t0)⇒ ∀t ≥ t0, x(t) ∈ F(t)

F(t0)

F(t)

x1

x 2

95/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Control funnels

System with continuous dynamics ẋ = f (x , t)

x1

x 2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

∀t0 ∈ R, x(t0) ∈ F(t0)⇒ ∀t ≥ t0, x(t) ∈ F(t)

F(t0)

F(t)

x1

x 2

95/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Control funnels

System with continuous dynamics ẋ = f (x , t)

x1

x 2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

∀t0 ∈ R, x(t0) ∈ F(t0)⇒ ∀t ≥ t0, x(t) ∈ F(t)

F(t0)

F(t)

x1

x 2

95/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:

• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function

• Fα is a fixed d-dimensional ellipsoid centered on the reference
trajectory

• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:

• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function

• Fα is a fixed d-dimensional ellipsoid centered on the reference
trajectory

• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:
• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function

• Fα is a fixed d-dimensional ellipsoid centered on the reference
trajectory

• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:
• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function

• Fα is a fixed d-dimensional ellipsoid centered on the reference
trajectory

• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:
• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function
• Fα is a fixed d-dimensional ellipsoid centered on the reference

trajectory

• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

How to build funnels?

∗ Linear Quadratic Regulator

• Needs specific competences...

• Design funnels tracking trajectories:
• First easy example: trajectory of the form e−t · x0

For every W ⊆ Rd with x0 ∈W , FW : t 7→ {e−t · w | w ∈W }

• More generally, LQR∗ funnels ẋ = Ax + Bu, with x : R→ Rd

Fα : t 7→ {xref(t) + x∆ | V (x∆) ≤ α}

with V a Lyapunov function
• Fα is a fixed d-dimensional ellipsoid centered on the reference

trajectory
• Those enjoy absorption properties:

V (x∆(t + δt)) ≤ e−β·δtV (x∆(t))

Fα1

δ1; Fα2

δ2; Fα3

δ3; . . . with α1 > α2 > α3 > . . .

96/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example

obstacle

ct : positional clock; ch: local clock

F1
1

(ct∈I 1
1)

F1
2

(ct∈I 1
2)

F2
2

(ct∈I 2
2)

F1
3

(ct∈I 1
3)

α1≤ct≤β1

ct :=γ1; ch:=0

ch≥∆

ch:=0

α2≤ct≤β2

ct :=γ2, ch:=0

97/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Example

obstacleF1
1 (β1)

F1
1 (α1)

F1
2 (γ1)

F2
2 (α2)

F2
2 (β2)

F1
3 (γ2)

ct : positional clock; ch: local clock

F1
1

(ct∈I 1
1)

F1
2

(ct∈I 1
2)

F2
2

(ct∈I 2
2)

F1
3

(ct∈I 1
3)

α1≤ct≤β1

ct :=γ1; ch:=0

ch≥∆

ch:=0

α2≤ct≤β2

ct :=γ2, ch:=0

97/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

98/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

98/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

98/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller ← winning (optimal) strategy

98/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A pick-and-place example

1d point mass

Funnel system

99/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A pick-and-place example

1d point mass Funnel system

99/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

1 2 3 5

6

7

ref
sys

67

4

5

4

1 2

3

100/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Current challenges

For control people
• Handle more non-linear systems (automatically build control funnels)

For us
• Does not scale up very well so far (huge timed automata models)

• Build the model on-demand?
But, can we give guarantees (optimality) when only part of the
model has been built?

• Develop specific algorithms for the special timed automata we
construct?

• Note: Reachability is indeed in NLOGSPACE...

• Implement efficient approx. algorithm for weighted timed games

101/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Current challenges

For control people
• Handle more non-linear systems (automatically build control funnels)

For us
• Does not scale up very well so far (huge timed automata models)

• Build the model on-demand?
But, can we give guarantees (optimality) when only part of the
model has been built?

• Develop specific algorithms for the special timed automata we
construct?

• Note: Reachability is indeed in NLOGSPACE...

• Implement efficient approx. algorithm for weighted timed games

101/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Outline

1 Timed automata

2 Weighted timed automata

3 Timed games

4 Weighted timed games

5 Tools

6 Towards applying all this theory to robotic systems

7 Conclusion

102/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Conclusion

Summary of the talk
• Basics of timed automata verification

• Relevant extensions for applications: weights, games, mix of both
• We looked at decidability and limits
• We mentioned algorithmics and tools

• Timed automata can be used as abstractions for more complex
systems

103/103

Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Conclusion

ANR Ticktac webpage: http://www.irisa.fr/sumo/ticktac/

Current challenges
• Various theoretical issues

• Decidability and approximability of weighted timed automata and
games

• New approaches (tree automata, reachability relations) might give a
new light on the verification of timed systems

• Robustness and implementability

• Continue working on algorithms, tools and benchmarks

Within ANR project Ticktac

• Implementation of (weighted) timed games (good data structures,
abstractions, etc.)

• More applications with specific challenges (e.g. robotic problems)

103/103

http://www.irisa.fr/sumo/ticktac/

	Timed automata
	Weighted timed automata
	Timed games
	Weighted timed games
	Tools
	Towards applying all this theory to robotic systems
	Conclusion

