On finite-memory determinacy of games on graphs

Patrícía Bouyer LSV, CNRS, Unív. París-Saclay, ENS París-Saclay France

Based on joint work with Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, Pierre Vandenhove (Published at CONCUR'20)

Strategy synthesis for two-player games

• Find good and simple controllers for systems interacting with an antagonistic environment

Strategy synthesis for two-player games

• Find good and simple controllers for systems interacting with an antagonistic environment

«Good»?

• Performance w.r.t. objectives / payoffs / preference relations

Strategy synthesis for two-player games

• Find good and simple controllers for systems interacting with an antagonistic environment

«Good»?

 Performance w.r.t. objectives / payoffs / preference relations

«Simple»?

- Memoryless strategies
- Finite-memory strategies

Strategy synthesis for two-player games

• Find good and simple controllers for systems interacting with an antagonistic environment

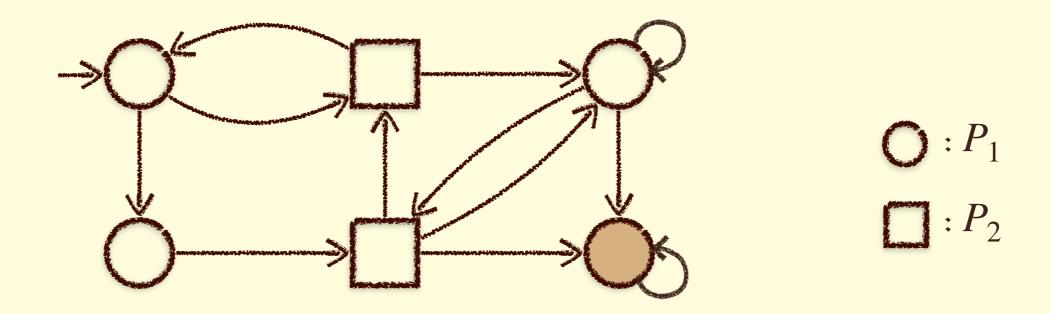
«Good»?

 Performance w.r.t. objectives / payoffs / preference relations

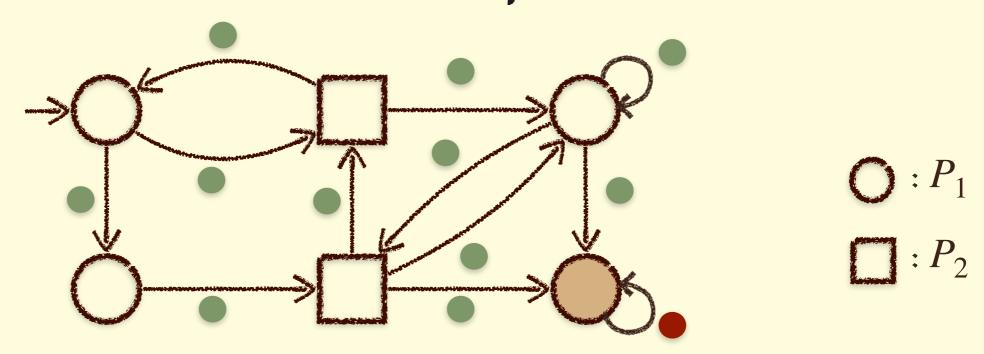
« Simple »?

- Memoryless strategies
 - Finite-memory strategies

When are simple strategies sufficient to play optimally?

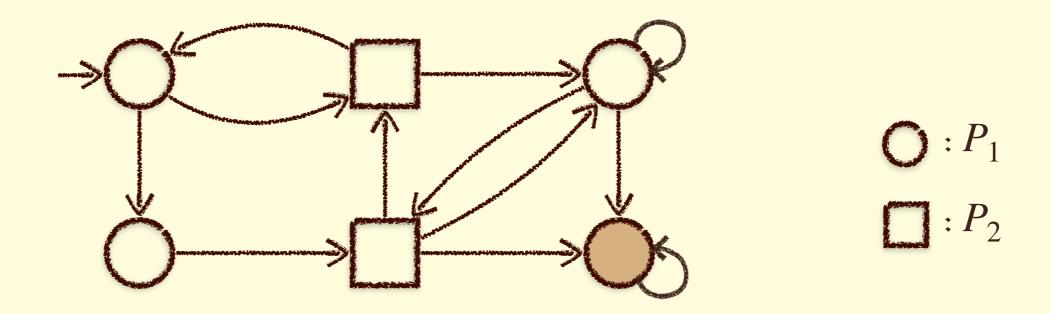


Reachability winning condition for P_1

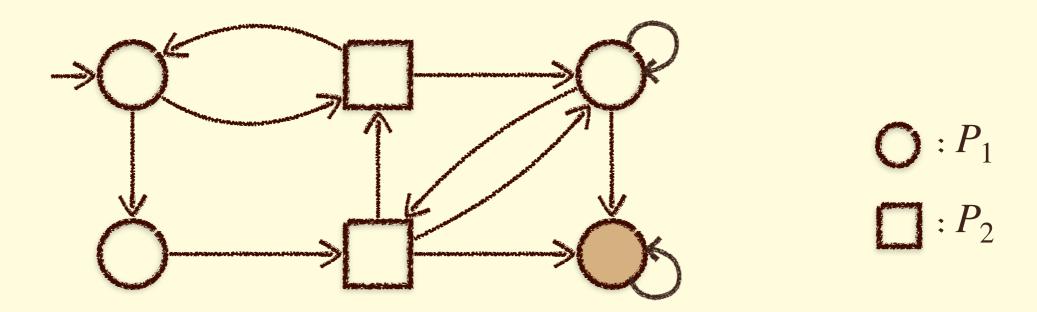


Reachability winning condition for P_1

Use of colors to define winning condition/preference relation $\bullet \quad \bullet \quad (\quad \bullet \quad + \quad \bullet \quad)^{\omega}$



Reachability winning condition for P_1



Reachability winning condition for P_1

The game is played using strategies:

$$\sigma_i: S^*S_i \to E$$

 $\sigma_i: S^*S_i \to E$

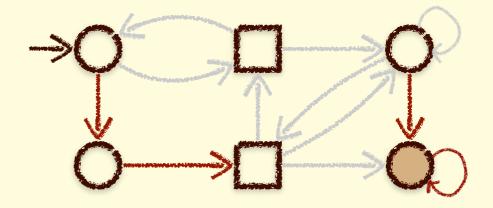
 $\sigma_i: S^*S_i \to E$

Subclasses of interest

 $\sigma_i: S^*S_i \to E$

Subclasses of interest

• Memoryless strategy: $\sigma_i: S_i \to E$

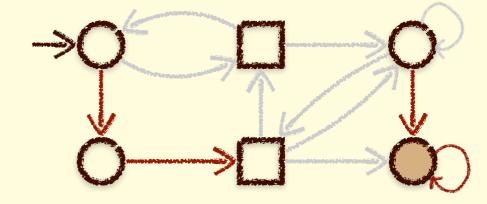


« Reach the target »

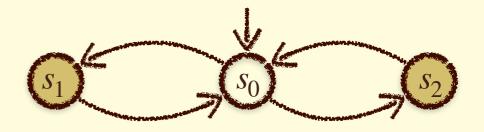
 $\sigma_i: S^*S_i \to E$

Subclasses of interest

- Memoryless strategy: $\sigma_i: S_i \to E$
- Finite-memory strategy: σ_i defined by a finite-state Mealy machine



« Reach the target »



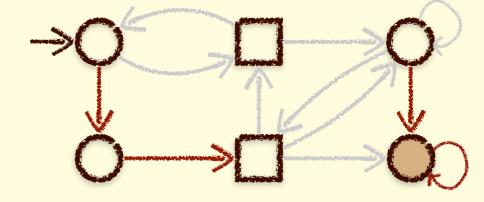
« Visit both s_1 and s_2 »

Every odd visit to s_0 , go to s_1 Every even visit to s_0 , go to s_2

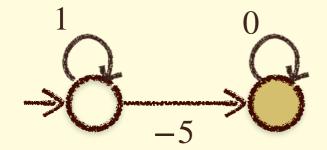
 $\sigma_i: S^*S_i \to E$

Subclasses of interest

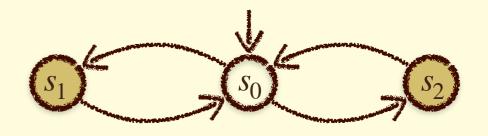
- Memoryless strategy: $\sigma_i: S_i \to E$
- Finite-memory strategy: σ_i defined by a finite-state Mealy machine



« Reach the target »



 $^{\prime\prime}$ Reach the target with energy 0 $^{\prime\prime}$ Loop 5 times in the initial state



« Visit both s_1 and s_2 »

Every odd visit to s_0 , go to s_1 Every even visit to s_0 , go to s_2

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω} .

 $\pi\sqsubseteq\pi'$ and $\pi'\sqsubseteq\pi$ means that π and π' are equally appreciated $\pi\sqsubseteq\pi'$ and $\pi'\not\sqsubseteq\pi$ means that π' is preferred over π

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω} .

 $\pi\sqsubseteq\pi'$ and $\pi'\sqsubseteq\pi$ means that π and π' are equally appreciated $\pi\sqsubseteq\pi'$ and $\pi'\not\sqsubseteq\pi$ means that π' is preferred over π

Examples

- $W \subseteq C^{\omega}$ winning condition: $\pi \sqsubseteq \pi'$ if either $\pi' \in W$ or $\pi \not\in W$
- Quantitative real payoff f

 $\pi \sqsubseteq \pi' \text{ if } f(\pi) \leq f(\pi')$

Ex: MP, AE, TP

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω} .

 $\pi\sqsubseteq\pi'$ and $\pi'\sqsubseteq\pi$ means that π and π' are equally appreciated $\pi\sqsubseteq\pi'$ and $\pi'\not\sqsubseteq\pi$ means that π' is preferred over π

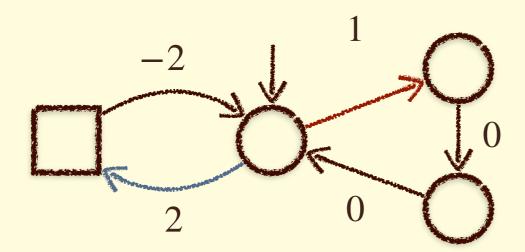
Examples

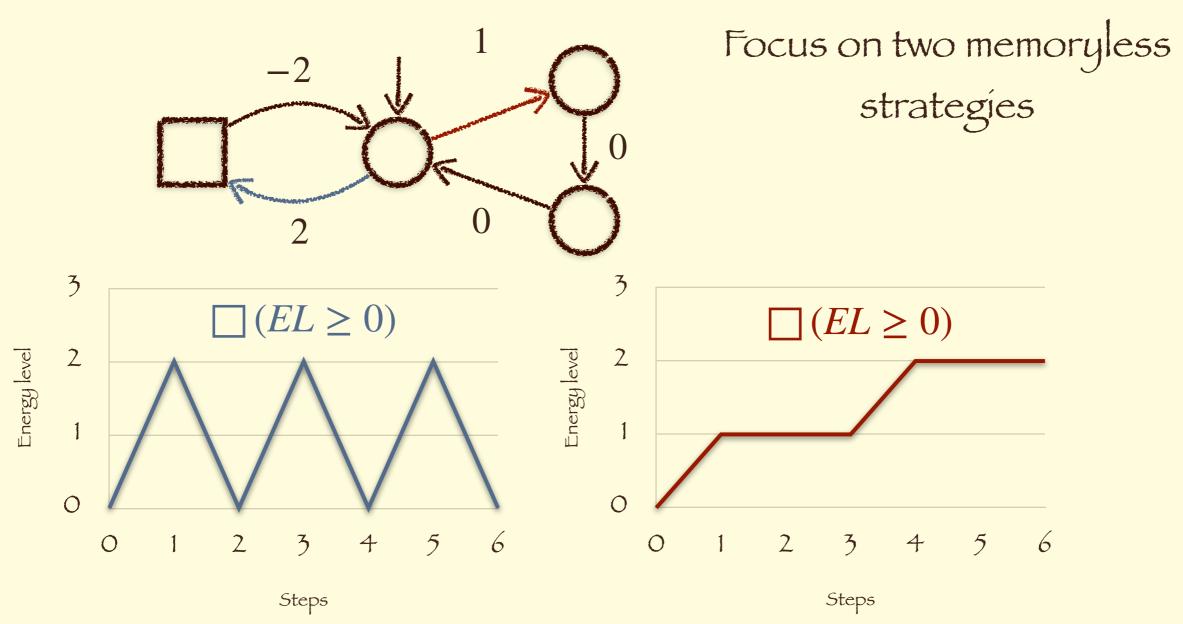
- $W \subseteq C^{\omega}$ winning condition: $\pi \sqsubseteq \pi'$ if either $\pi' \in W$ or $\pi \not\in W$
- Quantitative real payoff f $\pi \sqsubseteq \pi'$ if $f(\pi) \le f(\pi')$

Ex: MP, AE, TP

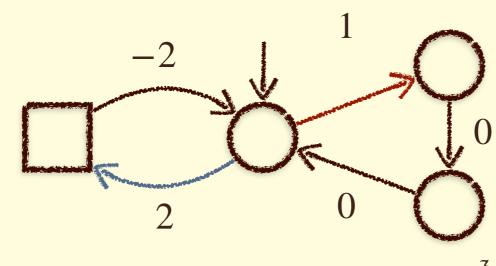
Zero-sum assumption:

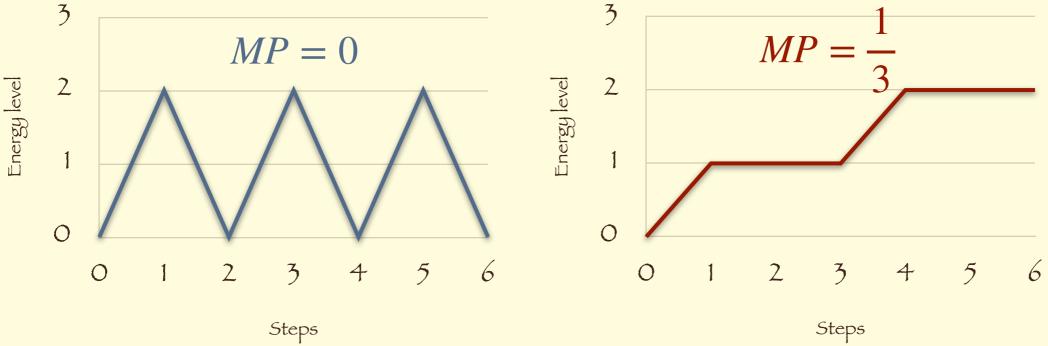
- Preference of P_1 is \sqsubseteq
- Preference of P_2 is \sqsubseteq^{-1}



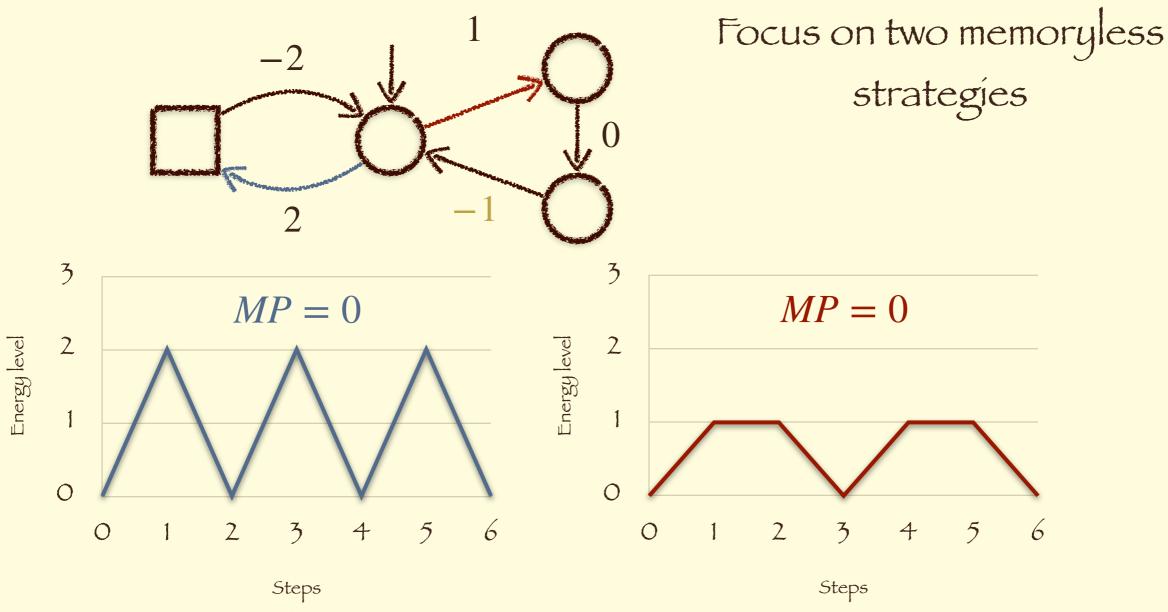


• Constraint on the energy level (EL)

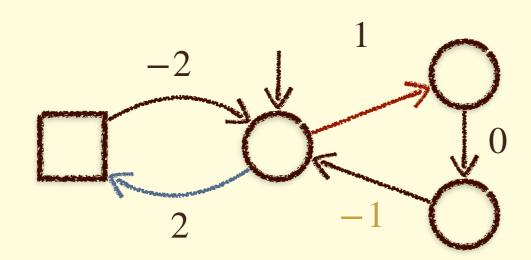


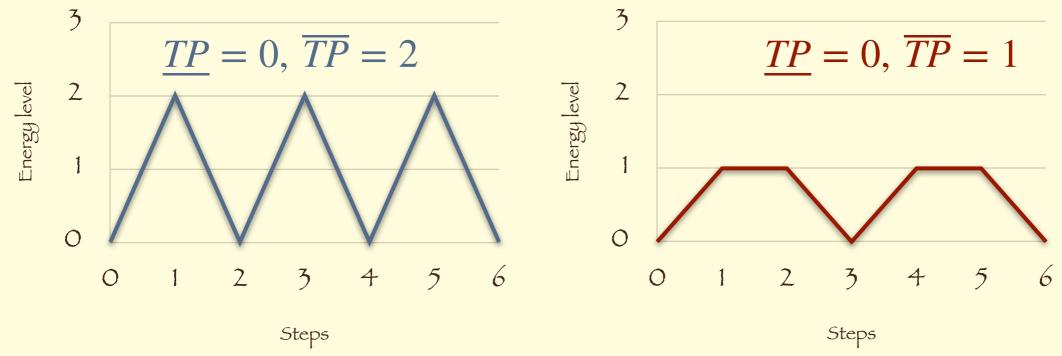


- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition

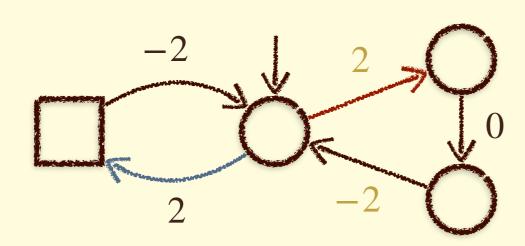


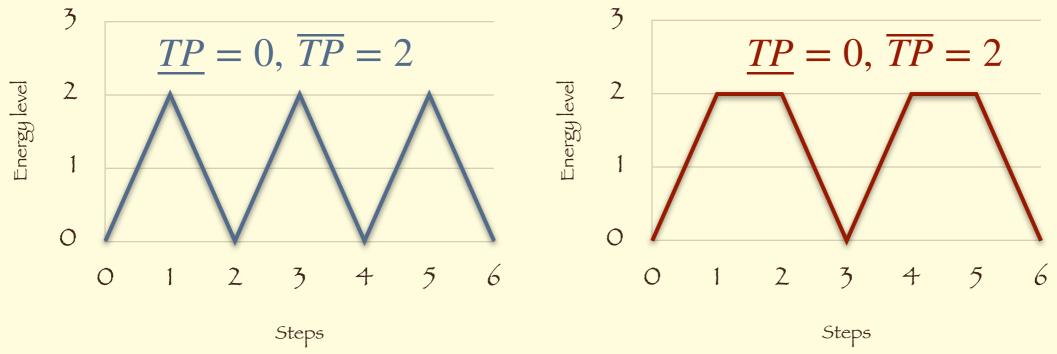
- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition



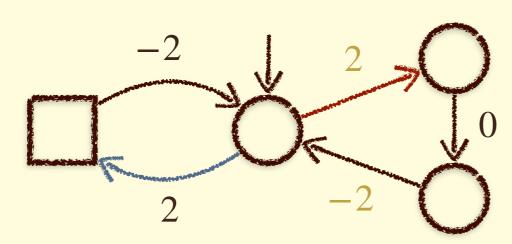


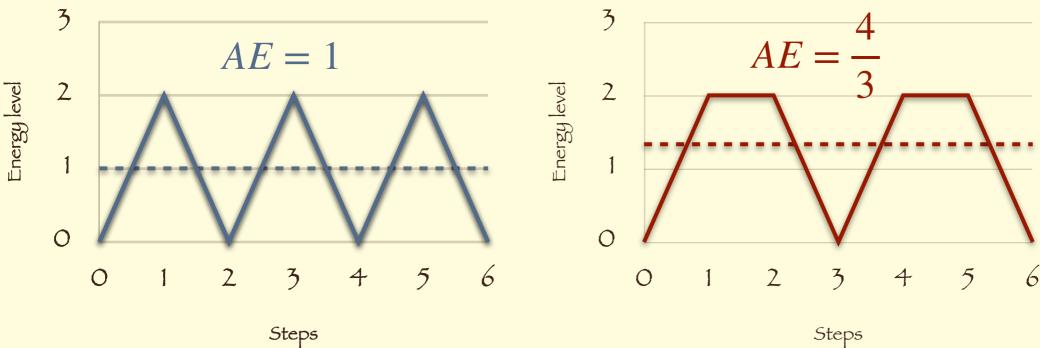
- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)



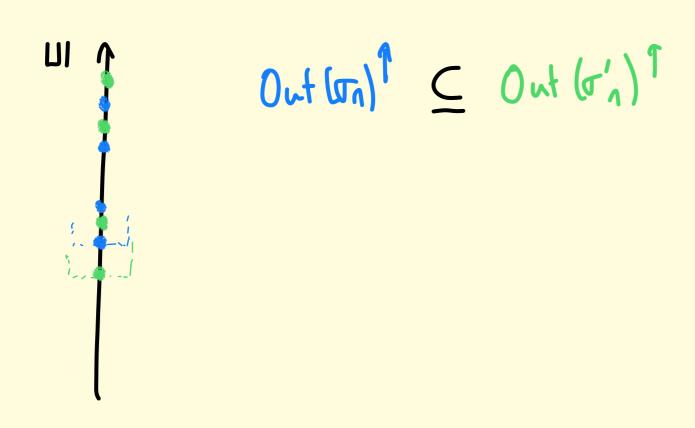


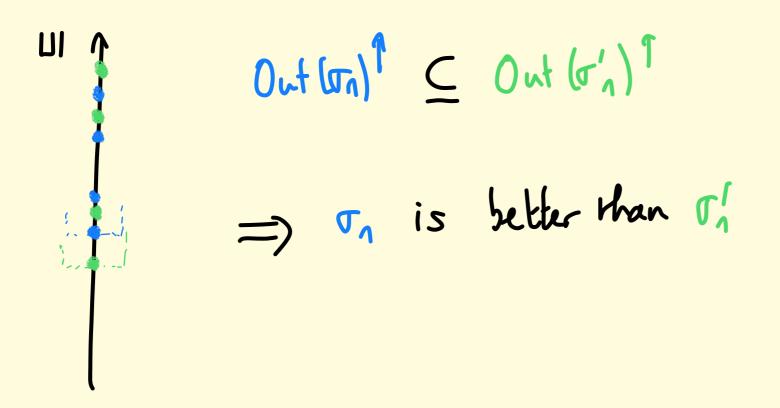
- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)

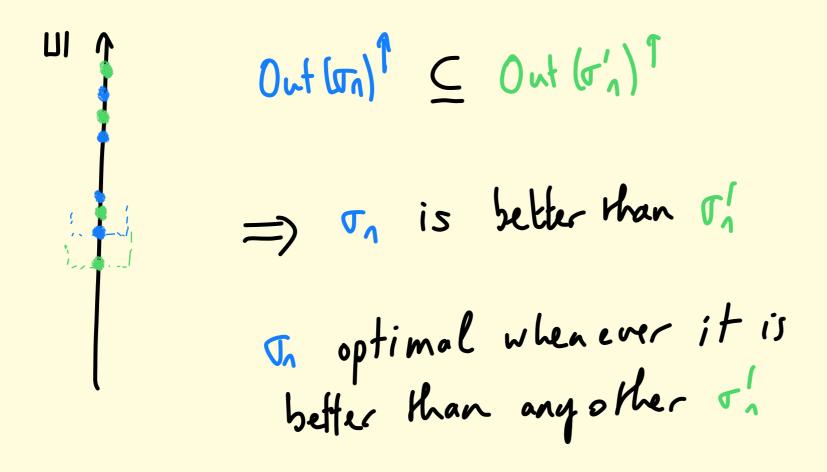




- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)
- Average-energy (AE)







Remark

- To be distinguished from:
 - ϵ -optimal
 - Subgame-perfect optimal (in our case: Nash equilibria)

A focus on memoryless strategies

Quite often!

Quite often!

Examples

• Reachability, safety, Büchi, parity, MP, EL ≥ 0, TP, AE, etc...

Quite often!

Examples

• Reachability, safety, Büchi, parity, MP, $EL \ge 0$, TP, AE, etc...

Can we characterize when they are?

Quite often!

Examples

• Reachability, safety, Büchi, parity, MP, $EL \ge 0$, TP, AE, etc...

Can we characterize when they are?

YES!

Quite often!

Examples

• Reachability, safety, Büchi, parity, MP, $EL \ge 0$, TP, AE, etc...

Can we characterize when they are?

YES!

And this is a beautiful result by Gimbert and Zielonka, CONCUR'05

The memoryless story

Sufficient conditions

The memoryless story

Sufficient conditions

• Sufficient conditions to guarantee memoryless optimal strategies for both player [GZO4,AR17]

The memoryless story

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both player [GZ04,AR17]
- Sufficient conditions to guarantee memoryless optimal strategies for one player (« half-positional ») [Kop06,Gim07,GK14]

The memoryless story

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both player [GZ04,AR17]
- Sufficient conditions to guarantee memoryless optimal strategies for one player (« half-positional ») [Kop06,Gim07,GK14]

• Characterization of the preference relations admitting optimal memoryless strategies for both players in all finite games [GZO5]

[GZ05]

[GZ05]

Let ⊑ be a preference relation.

[GZ05]

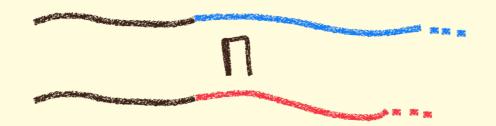
Let ⊑ be a preference relation.

It is said:

[GZ05]

Let ⊑ be a preference relation.

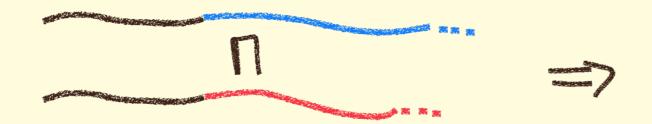
It is said:



[GZ05]

Let ⊑ be a preference relation.

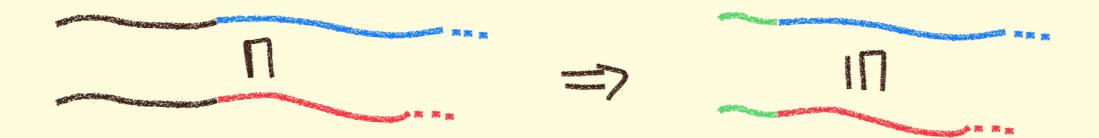
It is said:



[GZ05]

Let ⊑ be a preference relation.

It is said:

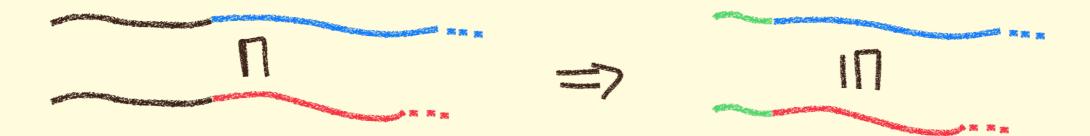


[GZ05]

Let ⊑ be a preference relation.

It is said:

monotone whenever



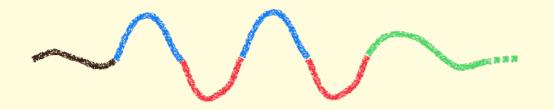
[GZ05]

Let ⊑ be a preference relation.

It is said:

monotone whenever



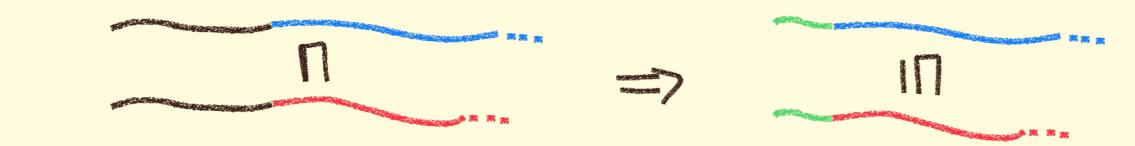


[GZ05]

Let ⊑ be a preference relation.

It is said:

monotone whenever

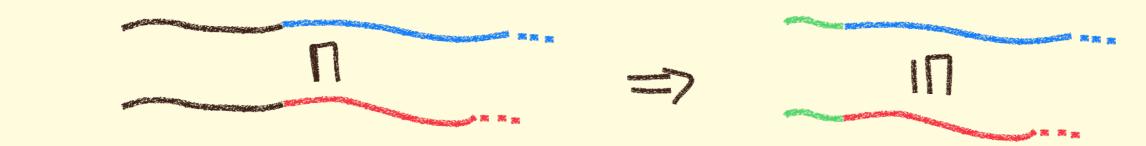


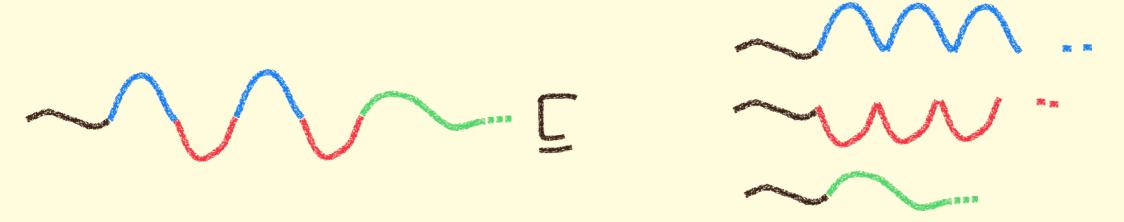
[GZ05]

Let ⊑ be a preference relation.

It is said:

monotone whenever



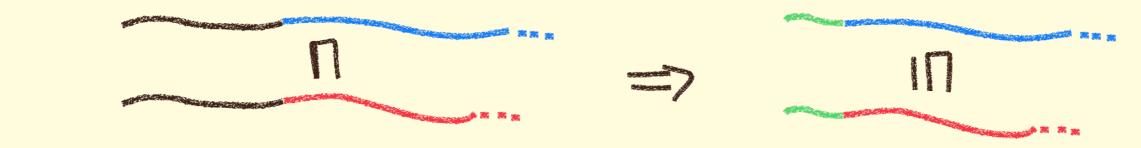


[GZ05]

Let ⊑ be a preference relation.

It is said:

monotone whenever



[GZ05]

[GZ05]

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have memoryless optimal strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective

[GZ05]

Characterization - Two-player games

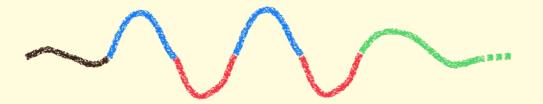
The two following assertions are equivalent:

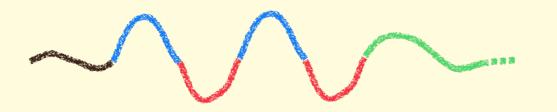
- 1. All finite games have memoryless optimal strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective

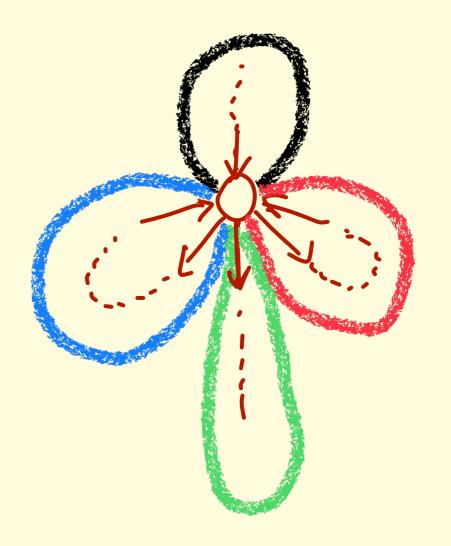
Characterization - One-player games

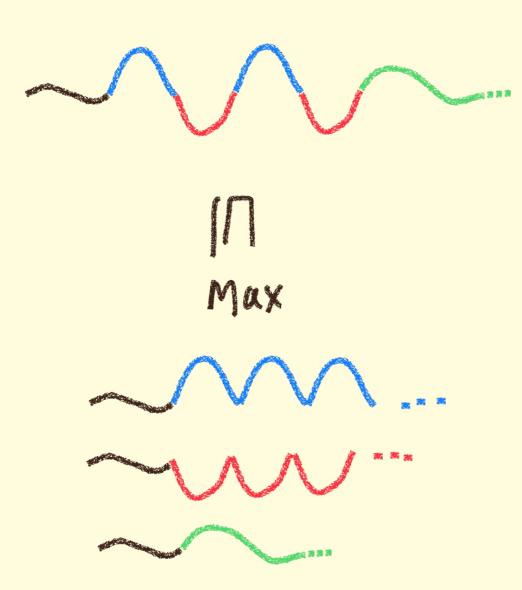
The two following assertions are equivalent:

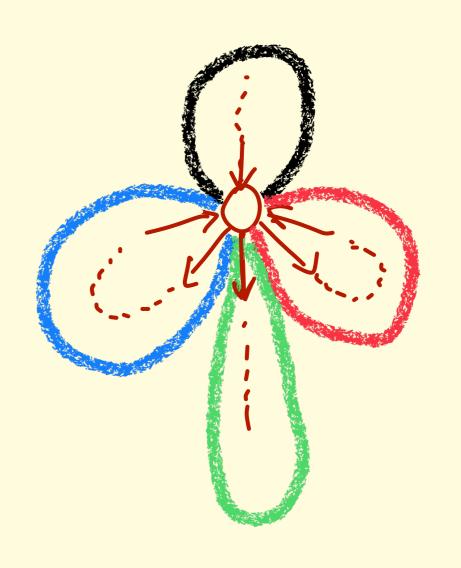
- 1. All finite P_1 -games have (uniform) memoryless optimal strategies
- 2. ⊑ is monotone and selective



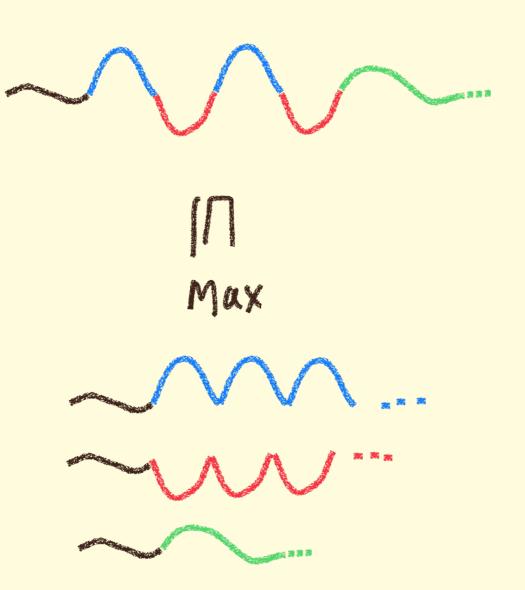


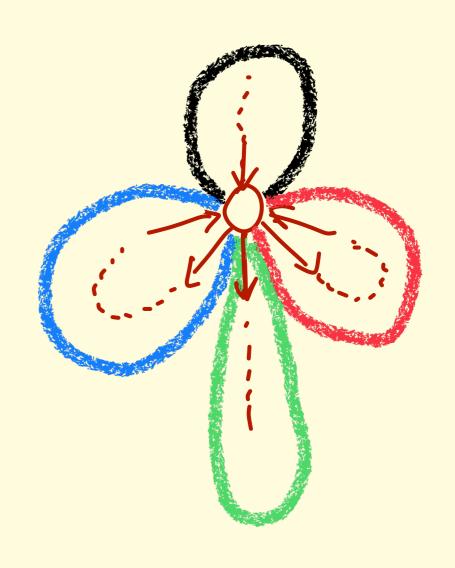






Assume all P_1 -games have optimal memoryless strategies.

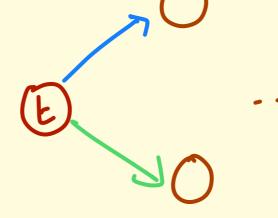




⊑ is selective

Assume ⊑ is monotone and selective.

The case of oneplayer games



one best choice between and wonotony)
t no reason to swap at t (selectivity)

No memory required at t!

Applications

Lifting theorem

• If in all finite one-player game for player P_i , P_i has uniform memoryless optimal strategies, then both players have memoryless optimal strategies in all finite two-player games.

Applications

Lifting theorem

• If in all finite one-player game for player P_i , P_i has uniform memoryless optimal strategies, then both players have memoryless optimal strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Applications

Lifting theorem

• If in all finite one-player game for player P_i , P_i has uniform memoryless optimal strategies, then both players have memoryless optimal strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Discussion

- Easy to analyse the one-player case (graph analysis)
 - Mean-payoff, average-energy [BMRLL15]
- Allows to deduce properties in the two-player case

Examples

Reachability, safety:

- Reachability, safety:
 - Monotone (though not prefix-independent)

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Paríty, mean-payoff:

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Priority mean payoff [GZ05]

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Priority mean payoff [GZ05]
- Average-energy games [BMRLL15]

Discussion of examples

Examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Priority mean payoff [GZ05]
- Average-energy games [BMRLL15]
 - Lifting theorem!!

Winning condition for P_1 :

 $((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$

Winning condition for P_1 :

$$(MP \in \mathbb{Q}) \land B \ddot{u} chi(A)) \lor coB \ddot{u} chi(B)$$

$$\limsup_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} c_i \in \mathbb{Q}$$
$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} c_i \in \mathbb{Q}$$

Winning condition for P_1 :

 $((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

• In all one-player games, P_1 has a memoryless uniform optimal strategy

Winning condition for P_1 :

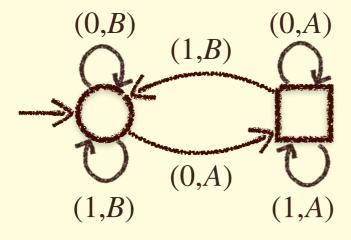
$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

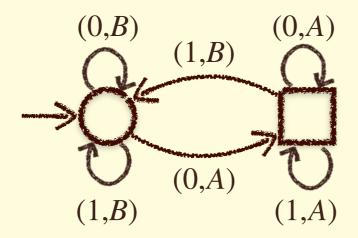
- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective



Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

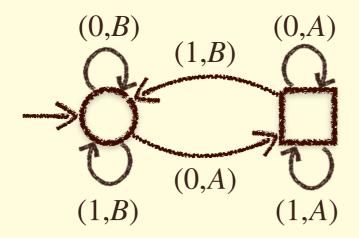
- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective



Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective



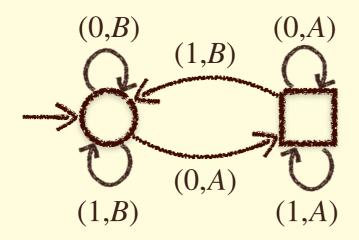
How should P_1 play this game?

• P_1 wins this game:

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

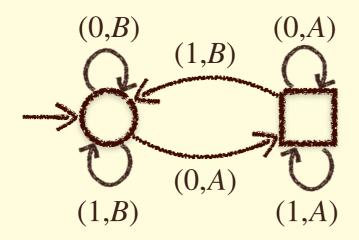


- P_1 wins this game:
 - Infinitely often, give the hand back to P_2

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

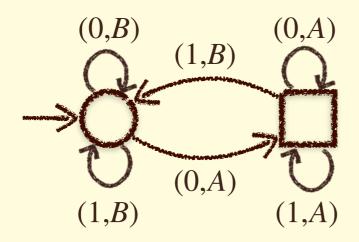


- P_1 wins this game:
 - Infinitely often, give the hand back to P_2
 - Play for a long time the edge labelled (0,B) to approach 0

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

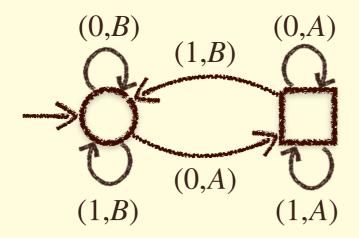


- P_1 wins this game:
 - Infinitely often, give the hand back to P_2
 - Play for a long time the edge labelled (0,B) to approach 0
 - Play for a long time the edge labelled (1,B) to approach 1

Winning condition for P_1 :

$$((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective



- P_1 wins this game:
 - Infinitely often, give the hand back to P_2
 - Play for a long time the edge labelled (0,B) to approach 0
 - Play for a long time the edge labelled (1,B) to approach 1
- It requires infinite memory!

Winning condition for P_1 :

 $((MP \in \mathbb{Q}) \land B\ddot{u}chi(A)) \lor coB\ddot{u}chi(B)$

If only \sqsubseteq is monotone and selective, P_1 might not have a memoryless optimal strategy

Finite-memory strategies

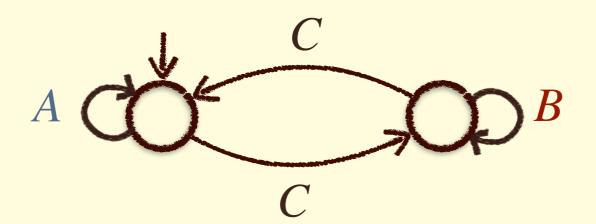
We need memory!

Objectives/preference relations become more and more complex

We need memory!

Objectives/preference relations become more and more complex

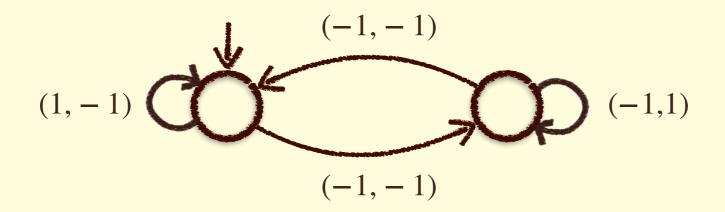
• Büchí(A) \land Büchí(B) requires finite memory



We need memory!

Objectives/preference relations become more and more complex

- Büchí(A) \land Büchí(B) requires finite memory
- $MP_1 \ge 0 \land MP_2 \ge 0$ requires infinite memory



A priori no...

A príorí no...

Consider the following winning condition for P_1 :

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

A príorí no...

Consider the following winning condition for P_1 :

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

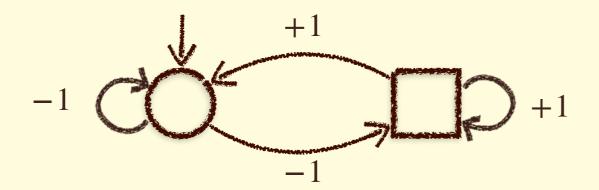
• Optimal finite-memory strategies in one-player games

A priori no...

Consider the following winning condition for P_1 :

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

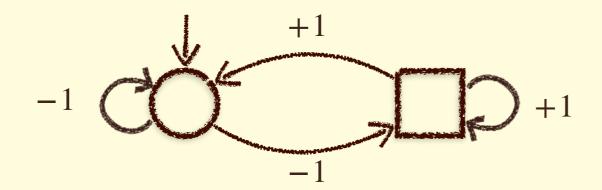


A priori no...

Consider the following winning condition for P_1 :

$$\lim_{n} \inf \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!



 P_1 wins but uses infinite memory!

How do we formalize finite memory? Standardly

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$, $\alpha_{\text{upd}}: M \times S \to M$ and $\alpha_{\text{next}}: M \times S_i \to E$

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$, $\alpha_{\text{upd}}: M \times S \to M$ and $\alpha_{\text{next}}: M \times S_i \to E$ - $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism

Standardly

- A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$, $\alpha_{\text{upd}}: M \times S \to M$ and $\alpha_{\text{next}}: M \times S_i \to E$
 - $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
 - α_{next} gives the next move

Standardly

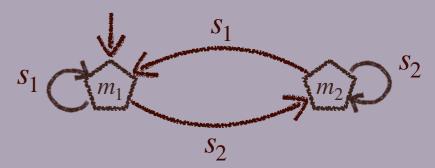
- A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$, $\alpha_{\text{upd}}: M \times S \to M$ and $\alpha_{\text{next}}: M \times S_i \to E$
 - $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
 - α_{next} gives the next move

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$,

 $\alpha_{\text{upd}}: M \times S \to M \text{ and } \alpha_{\text{next}}: M \times S_i \to E$

- $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
- α_{next} gives the next move

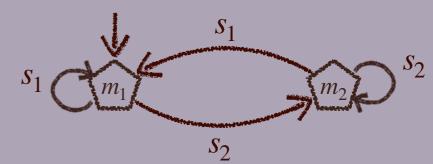


Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$,

 $\alpha_{\text{upd}}: M \times S \to M \text{ and } \alpha_{\text{next}}: M \times S_i \to E$

- $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
- α_{next} gives the next move



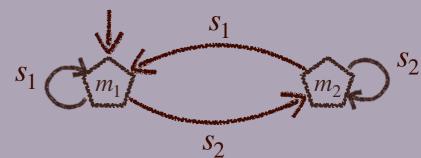
To have an abstract theorem...

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$,

 $\alpha_{\text{upd}}: M \times S \to M \text{ and } \alpha_{\text{next}}: M \times S_i \to E$

- $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
- α_{next} gives the next move



To have an abstract theorem...

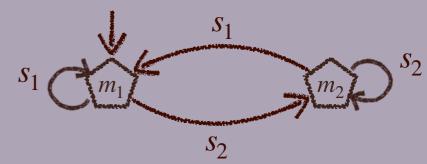
• The memory mechanism should not speak about information specific to particular games, hence:

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$,

 $\alpha_{\text{upd}}: M \times S \to M \text{ and } \alpha_{\text{next}}: M \times S_i \to E$

- $(M, m_{\rm init}, \alpha_{\rm upd})$ is a memory mechanism
- α_{next} gives the next move



To have an abstract theorem...

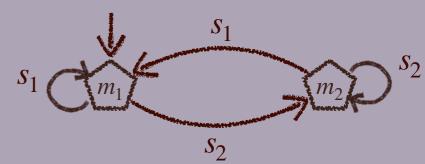
- The memory mechanism should not speak about information specific to particular games, hence:
 - α_{upd} should not speak of states

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$,

 $\alpha_{\text{upd}}: M \times S \to M \text{ and } \alpha_{\text{next}}: M \times S_i \to E$

- $(M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism
- α_{next} gives the next move



To have an abstract theorem...

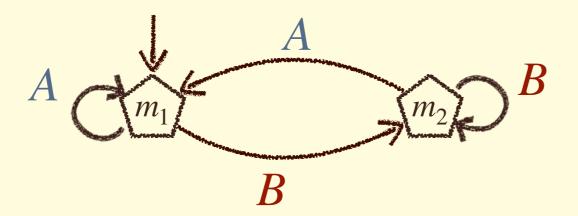
- The memory mechanism should not speak about information specific to particular games, hence:
 - $\alpha_{\rm upd}$ should not speak of states
 - $\alpha_{\rm upd}$ can speak of colors (notion of « chromatic strategy » by Kopczynski)

Memory skeleton

•
$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

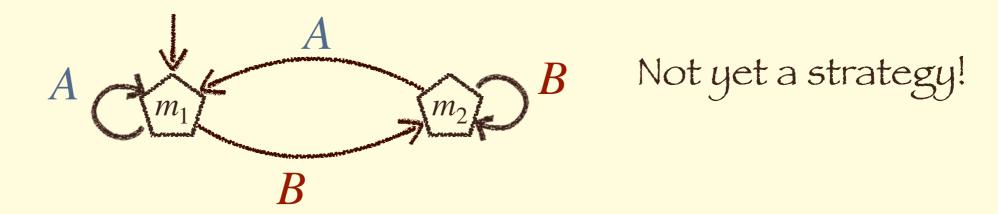
Memory skeleton

• $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$



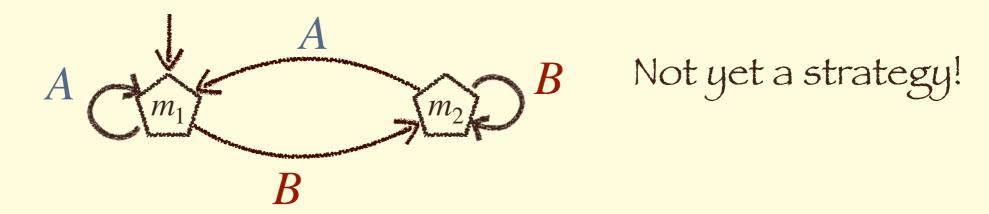
Memory skeleton

• $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$



Memory skeleton

• $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

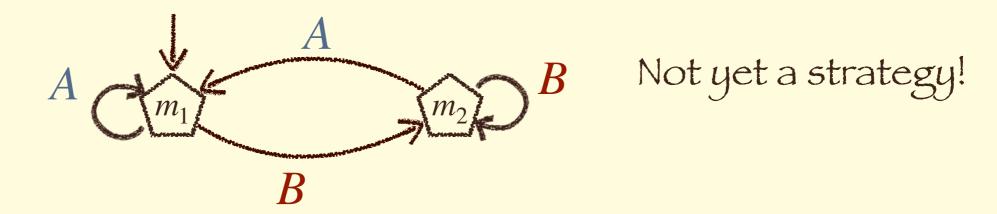


Strategy with memory M

• Additional next-move function: $\alpha_{\text{next}}: M \times S_i \to E$

Memory skeleton

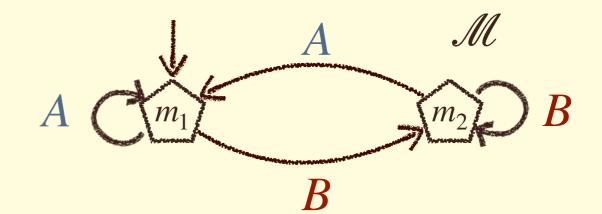
• $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

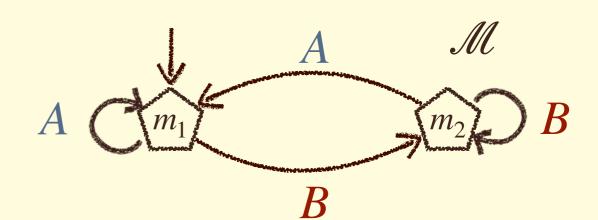


Strategy with memory M

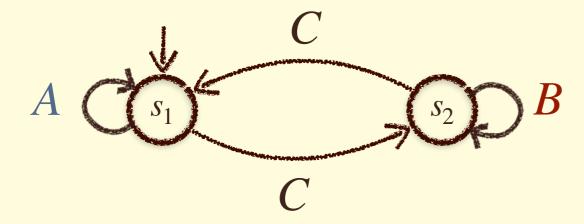
• Additional next-move function: $\alpha_{\text{next}}: M \times S_i \to E$

The above skeleton is sufficient for the winning condition $B\ddot{u}chi(A) \wedge B\ddot{u}chi(B)$

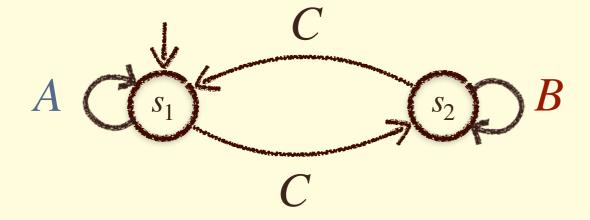


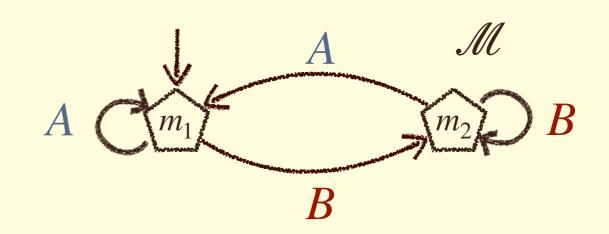


Game arena \mathcal{A} :



Game arena \mathcal{A} :



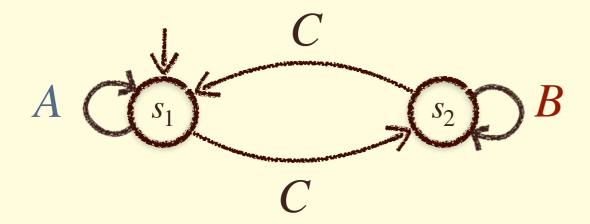


$$(s_1, m_1) \mapsto (s_1, s_2)$$

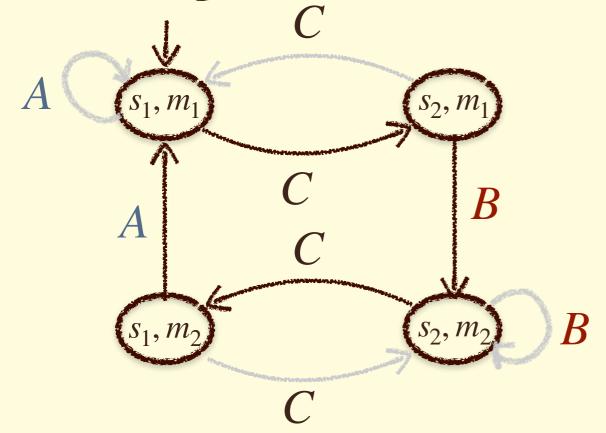
 $(s_1, m_2) \mapsto (s_1, s_1)$
 $(s_2, m_1) \mapsto (s_2, s_2)$
 $(s_2, m_2) \mapsto (s_2, s_1)$

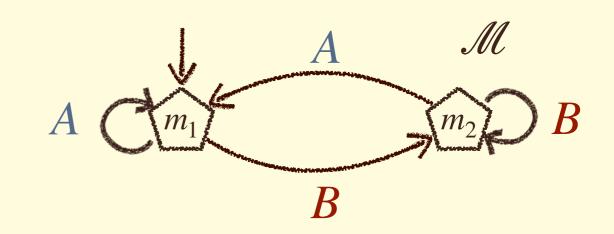
23

Game arena \mathcal{A} :



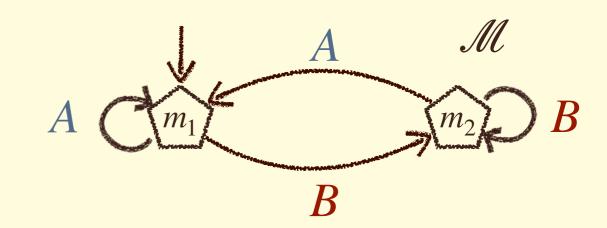
Product game $\mathcal{A} \times \mathcal{M}$:



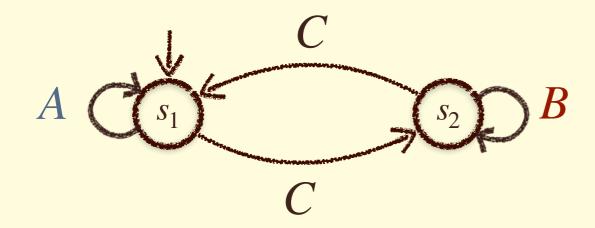


$$(s_1, m_1) \mapsto (s_1, s_2)$$

 $(s_1, m_2) \mapsto (s_1, s_1)$
 $(s_2, m_1) \mapsto (s_2, s_2)$
 $(s_2, m_2) \mapsto (s_2, s_1)$

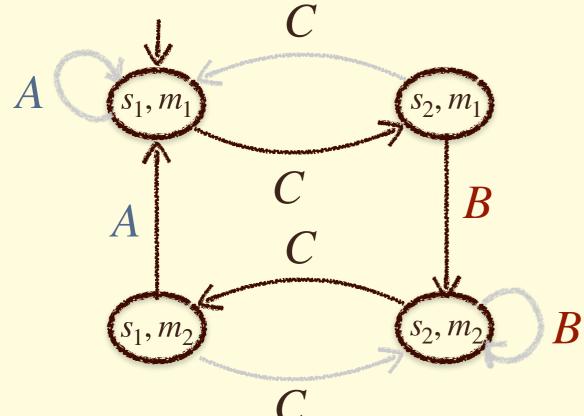


Game arena \mathcal{A} :



 $(s_1, m_1) \mapsto (s_1, s_2)$ $(s_1, m_2) \mapsto (s_1, s_1)$ $(s_2, m_1) \mapsto (s_2, s_2)$ $(s_2, m_2) \mapsto (s_2, s_1)$

Product game $\mathcal{A} \times \mathcal{M}$:



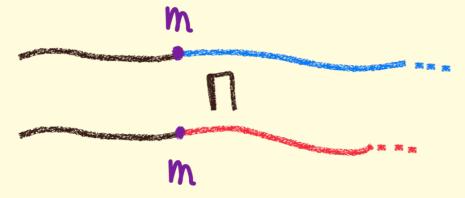
• One can however not apply the [GZ05] result to product games!

Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

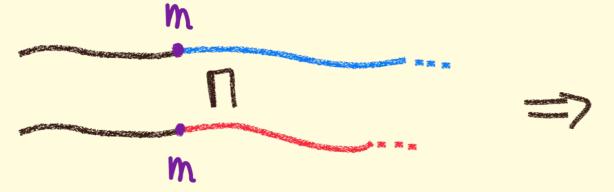
• *M*-monotone whenever



Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

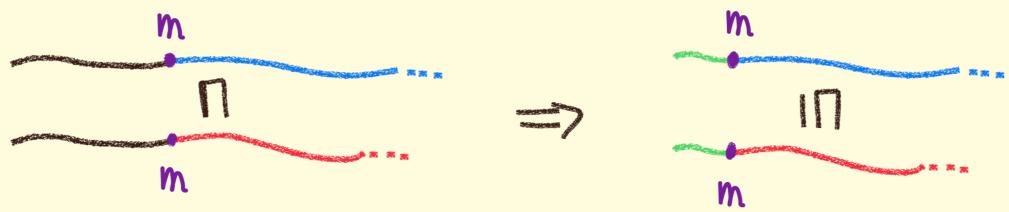
• *M*-monotone whenever



Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

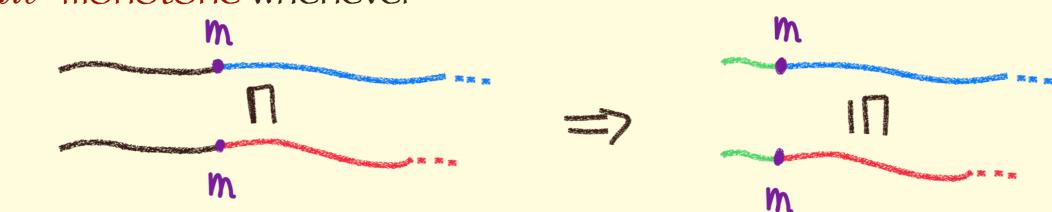
• *M*-monotone whenever



Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

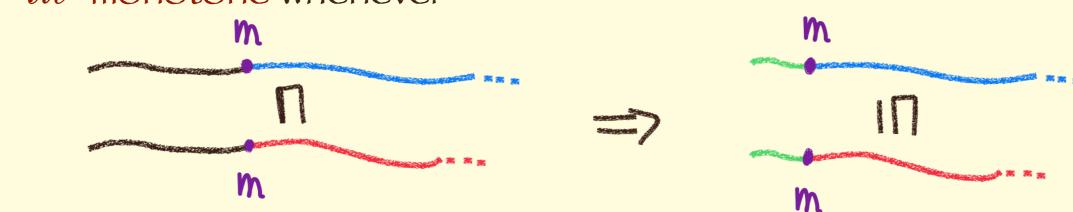
• *M*-monotone whenever

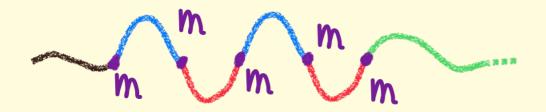


Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

• *M*-monotone whenever

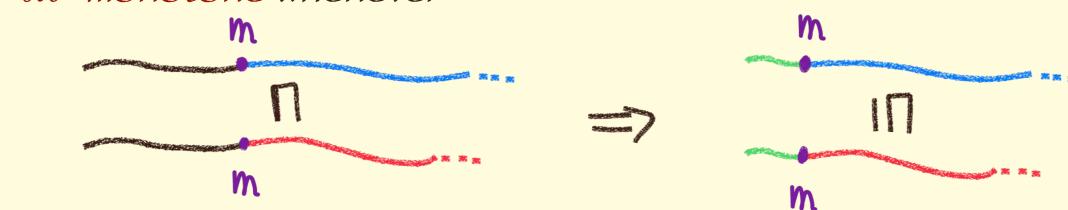




Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

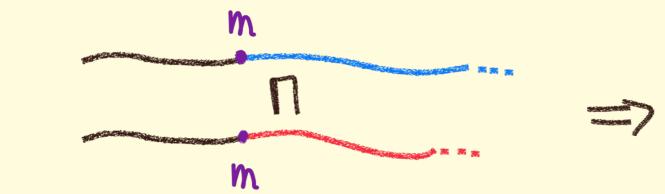
• *M*-monotone whenever

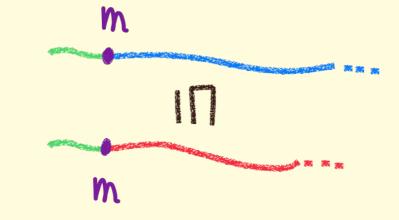


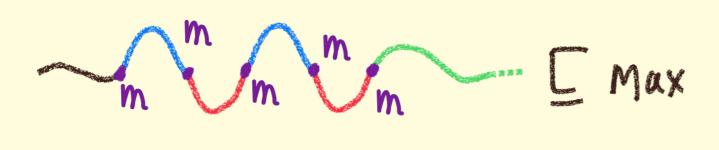
Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

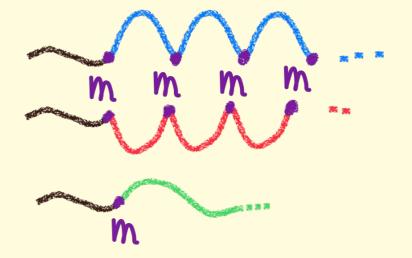
It is said:

• *M*-monotone whenever





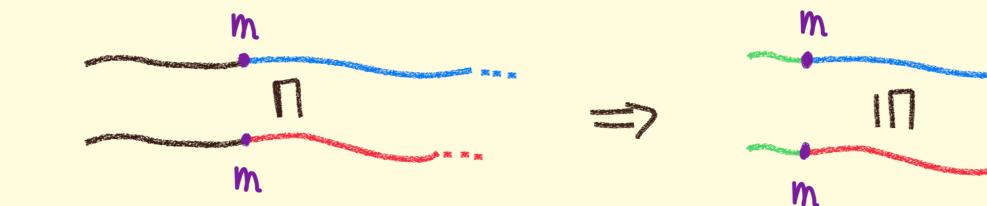




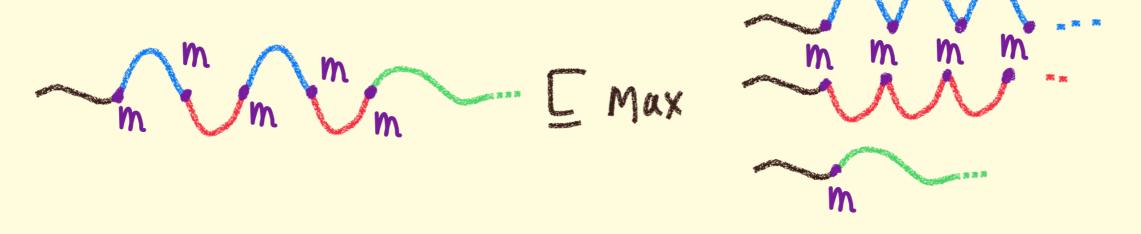
Let \sqsubseteq be a preference relation and $\mathcal M$ a memory skeleton.

It is said:

• *M*-monotone whenever



• *M*-selective whenever



We look at how ${\it M}$ classifies prefixes and cycles

Formal definitions of \mathcal{M} -monotony and \mathcal{M} -selectivity

Definition (\mathcal{M} -monotony)

Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M} -monotone if for all $m \in M$, for all $K_1, K_2 \in \mathcal{R}(C)$,

$$\exists w \in L_{m_{\text{init}},m}, [wK_1] \sqsubset [wK_2] \implies \forall w' \in L_{m_{\text{init}},m}, [w'K_1] \sqsubseteq [w'K_2].$$

Definition (\mathcal{M} -selectivity)

Let $\mathcal{M}=(M,m_{\text{init}},\alpha_{\text{upd}})$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M} -selective if for all $w\in C^*$, $m=\widehat{\alpha_{\text{upd}}}(m_{\text{init}},w)$, for all $K_1,K_2\in\mathcal{R}(C)$ such that $K_1,K_2\subseteq L_{m,m}$, for all $K_3\in\mathcal{R}(C)$,

$$[w(K_1 \cup K_2)^* K_3] \sqsubseteq [wK_1^*] \cup [wK_2^*] \cup [wK_3].$$

Characterization - Two-player games

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have optimal \mathcal{M} -strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have optimal M-strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective

Characterization - One-player games

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have optimal M-strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective

Characterization - One-player games

The two following assertions are equivalent:

- 1. All finite P_1 -games have (uniform) optimal \mathcal{M} -strategies
- 2. \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have optimal M-strategies for both players
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective

Characterization - One-player games

The two following assertions are equivalent:

- 1. All finite P_1 -games have (uniform) optimal \mathcal{M} -strategies
- 2. \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective

$$ightharpoonup$$
 We recover [GZ05] with $\mathcal{M}=\mathcal{M}_{\mathrm{triv}}$

Transfer/Lifting theorem

• If in all finite one-player game for player P_i , P_i has optimal \mathcal{M}_i -strategies, then both players have optimal $\mathcal{M}_1 \times \mathcal{M}_2$ -strategies in all finite two-player games.

Transfer/Lifting theorem

• If in all finite one-player game for player P_i , P_i has optimal \mathcal{M}_i -strategies, then both players have optimal $\mathcal{M}_1 \times \mathcal{M}_2$ -strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Transfer/Lifting theorem

• If in all finite one-player game for player P_i , P_i has optimal \mathcal{M}_i -strategies, then both players have optimal $\mathcal{M}_1 \times \mathcal{M}_2$ -strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Subclasses of games

• If both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective, then both players have optimal memoryless strategies in all \mathcal{M} -covered games.

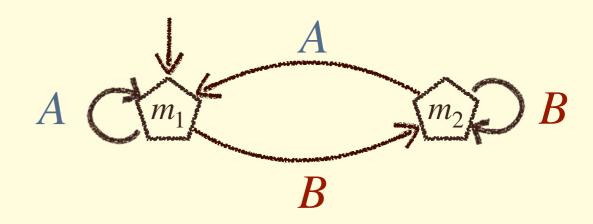
If the game has enough information from \mathcal{M} , then memoryless strategies will be sufficient

If the game has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

If the game has enough information from \mathcal{M} , then memoryless strategies will be sufficient

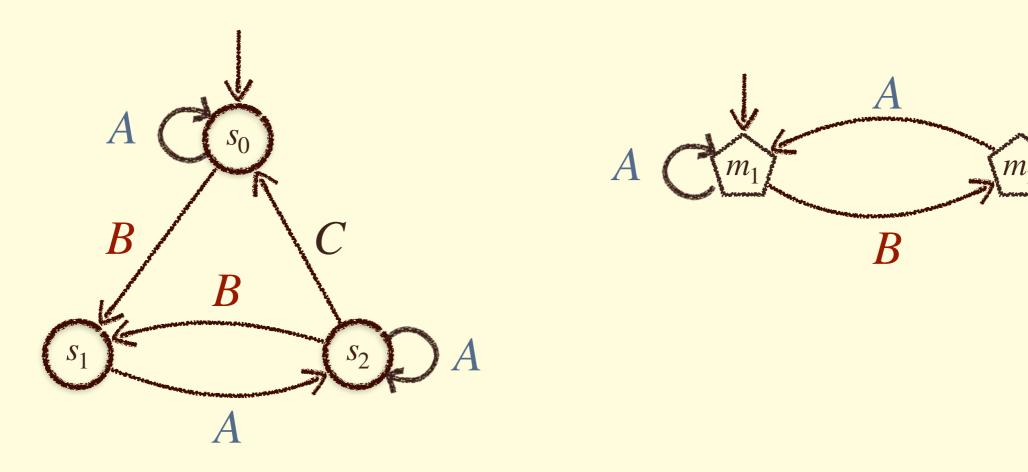
Covered arenas = same properties as product arenas



Memory-covered arenas

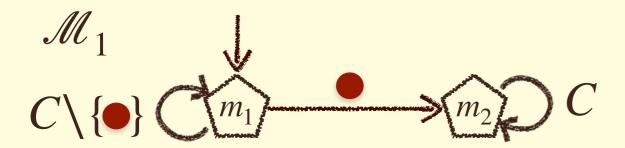
If the game has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

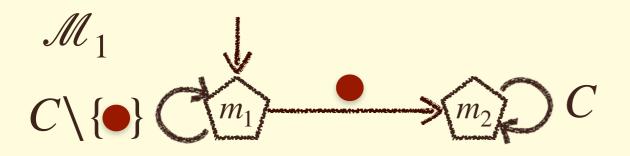


⊑ defined by a conjunction of reachability Reach () ∧ Reach ()

⊑ defined by a conjunction of reachability Reach () ∧ Reach ()

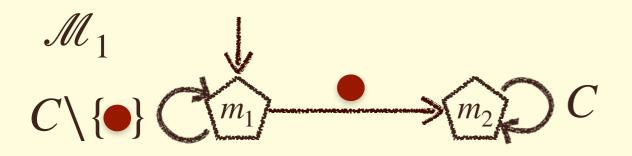


⊑ defined by a conjunction of reachability Reach () ∧ Reach ()

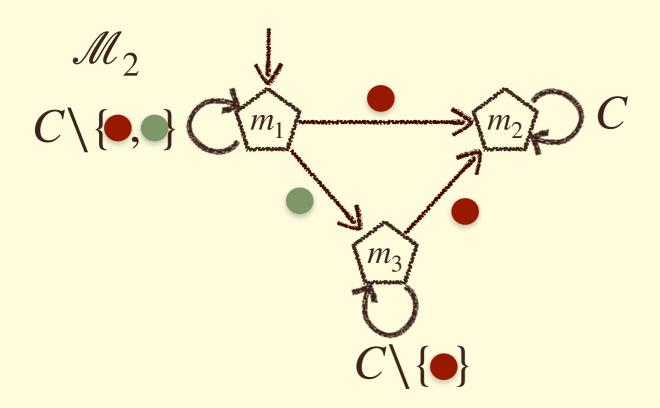


 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective

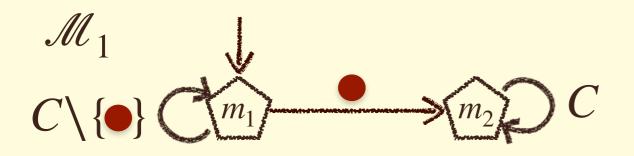
⊑ defined by a conjunction of reachability Reach () ∧ Reach ()



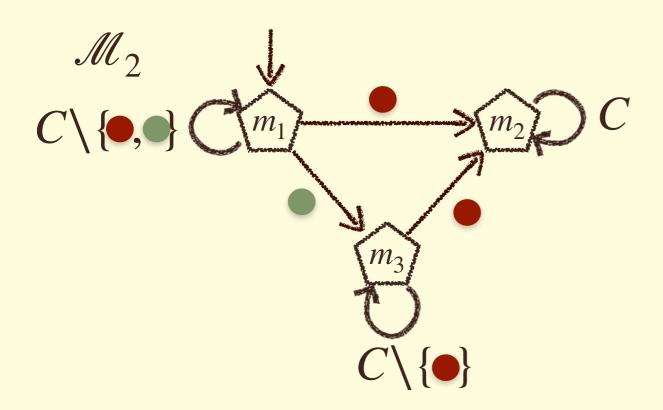
 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective



⊑ defined by a conjunction of reachability Reach () ∧ Reach ()

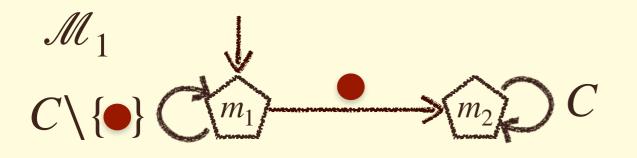


 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective

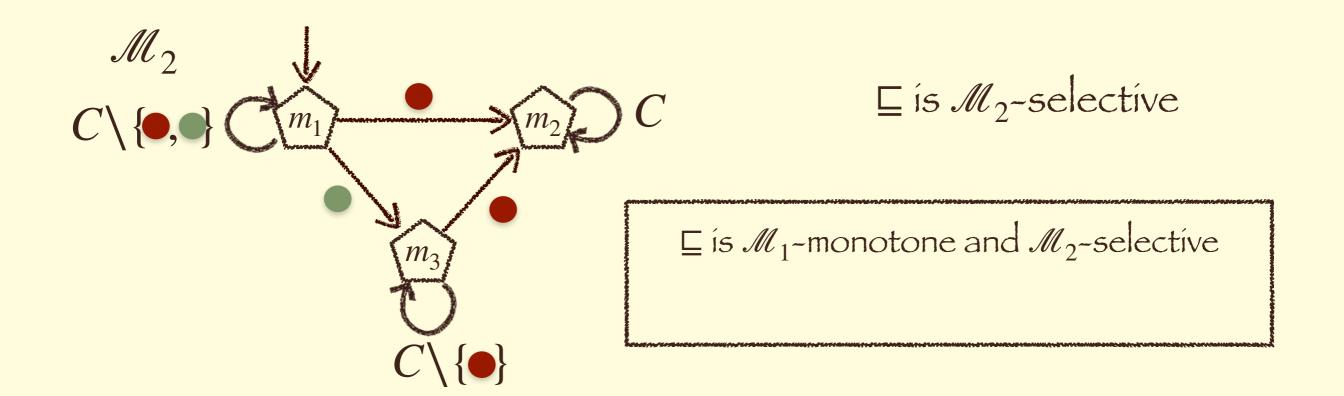


 \sqsubseteq is \mathcal{M}_2 -selective

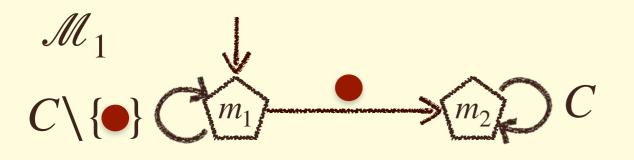
⊑ defined by a conjunction of reachability Reach () ∧ Reach ()



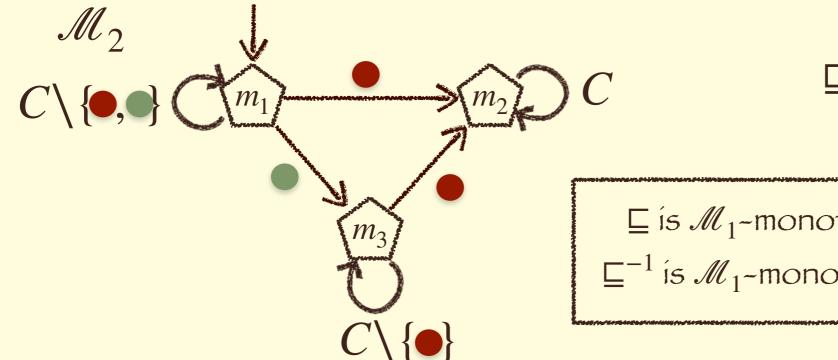
 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective



⊑ defined by a conjunction of reachability Reach () ∧ Reach ()



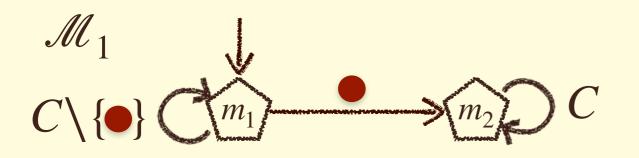
 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective



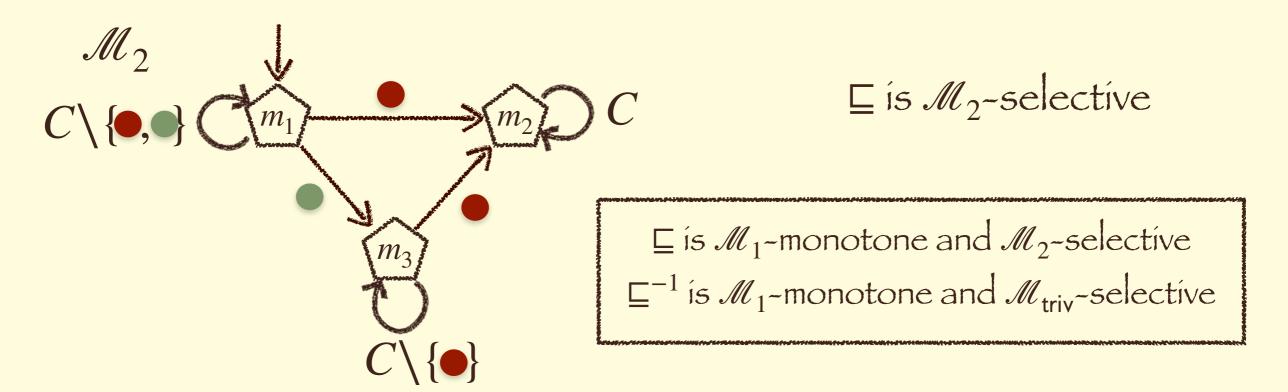
 \sqsubseteq is \mathcal{M}_2 -selective

 \sqsubseteq is \mathcal{M}_1 -monotone and \mathcal{M}_2 -selective \sqsubseteq^{-1} is \mathcal{M}_1 -monotone and $\mathcal{M}_{\text{triv}}$ -selective

⊑ defined by a conjunction of reachability Reach () ∧ Reach ()



 \sqsubseteq is \mathcal{M}_1 -monotone, but not \mathcal{M}_1 -selective



 \rightarrow Memory \mathcal{M}_2 is sufficient for both players!!

A generalization of [GZ05]

- To arena-independent finite memory
- Applies to generalized reachability or parity, lower- and upperbounded (multi-dimension) energy games

A generalization of [GZ05]

- To arena-independent finite memory
- Applies to generalized reachability or parity, lower- and upperbounded (multi-dimension) energy games

Limitations

- Does only capture arena-independent finite memory
- Hard to generalize (remember counter-example)
- Does not apply to multi-dim. MP, MP+parity, energy+MP (infinite memory)

Other approaches

- Sufficient conditions giving half-memory management results
- Compositionality w.r.t. objectives [LPR18]

Other approaches

- Sufficient conditions giving half-memory management results
- Compositionality w.r.t. objectives [LPR18]

Further work

- Understand the arena-dependent framework
- Infinite arenas
- Probabilistic setting
- Other concepts (Nash equilibria)