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The talk in one slide

• Find good and simple controllers for systems interacting with an 
antagonistic environment

Strategy synthesis for two-player games

• Performance w.r.t. objectives / 
payoffs / preference relations 

« Good »?

• Memoryless strategies 
• Finite-memory strategies

« Simple »?

When are simple strategies sufficient to play optimally?
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The setting - Example of a game

Reachability winning condition for P1

: P1

: P2

The game is played using strategies: 
σi : S*Si → E
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σi : S*Si → E

• Memoryless strategy: σi : Si → E
• Finite-memory strategy:  defined 

by a finite-state Mealy machine
σi

Subclasses of interest

Every odd visit to , go to  
Every even visit to , go to 

s0 s1

s0 s2

s0s1 s2
−5

1 0

« Reach the target with energy  »0 « Visit both  and  »s1 s2

Loop  times in the initial state5
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π ⊑ π′� π′� ⋢ π π′� π

The setting - Preference relation

A preference relation  is a total preorder on .⊑ Cω

•  winning condition: 
 

• Quantitative real payoff  
 

Ex: MP, AE, TP

W ⊆ Cω

π ⊑ π′� if either π′� ∈ W or π ∉ W
f

π ⊑ π′� if f(π) ≤ f(π′ �)

Examples

Zero-sum assumption: 
- Preference of  is  
- Preference of  is 

P1 ⊑
P2 ⊑−1
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Optimality of strategies

• To be distinguished from: 
- -optimal 
- Subgame-perfect optimal (in our case: Nash equilibria) 

ϵ

Remark
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A focus on memoryless 
strategies
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When are memoryless strategies 
sufficient to play optimally?

Quite often!

YES !

And this is a beautiful result by Gimbert and Zielonka, CONCUR’05

• Reachability, safety, Büchi, parity, MP, EL , TP, AE, etc… ≥ 0

Examples

Can we characterize when they are?
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The memoryless story

• Sufficient conditions to guarantee memoryless optimal strategies 
for both player [GZ04,AR17]

• Sufficient conditions to guarantee memoryless optimal strategies  
for one player (« half-positional ») [Kop06,Gim07,GK14]

Sufficient conditions

• Characterization of the preference relations admitting optimal 
memoryless strategies for both players in all finite games  [GZ05]
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The Gimbert-Zielonka characterization 
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[GZ05]
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The Gimbert-Zielonka characterization 
for memory less determinacy (2)

[GZ05]

The two following assertions are equivalent : 
1. All finite games have memoryless optimal strategies for both 

players 
2. Both  and  are monotone and selective⊑ ⊑−1

Characterization - Two-player games 

12



The Gimbert-Zielonka characterization 
for memory less determinacy (2)

[GZ05]

The two following assertions are equivalent : 
1. All finite games have memoryless optimal strategies for both 

players 
2. Both  and  are monotone and selective⊑ ⊑−1

Characterization - Two-player games 

The two following assertions are equivalent : 
1. All finite -games have (uniform) memoryless optimal strategies 
2.  is monotone and selective

P1

⊑

Characterization - One-player games 
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Why? Proof hint (1)
Assume all -games have optimal 

memoryless strategies.
P1

 is selective⊑
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Why? Proof hint (2)
Assume  is monotone 

and selective.
⊑

No memory required at !t

The case of one-
player games
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Applications
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Pi Pi
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Applications

Very powerful and extremely useful in practice!

• If in all finite one-player game for player ,  has uniform 
memoryless  optimal strategies, then both players have 
memoryless optimal strategies in all finite two-player games.

Pi Pi

Lifting theorem

• Easy to analyse the one-player case (graph analysis) 
- Mean-payoff, average-energy [BMRLL15] 

• Allows to deduce properties in the two-player case 

Discussion
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Discussion of examples

• Reachability, safety:
- Monotone (though not prefix-independent)
- Selective

• Parity, mean-payoff:
- Prefix-independent hence monotone
- Selective

• Priority mean payoff [GZ05]
• Average-energy games [BMRLL15]

- Lifting theorem!!

Examples
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Discussion
Winning condition for :P1

(0,B)

(1,B)

(0,A)

(1,A)
(0,A)

(1,B)

((MP )  Büchi( ))  coBüchi( )∈ ℚ ∧ A ∨ B

How should  
play this game?

P1

•  wins this game: 
- Infinitely often, give the hand back to  
- Play for a long time the edge labelled  to approach  
- Play for a long time the edge labelled  to approach  

• It requires infinite memory!

P1

P2

(0,B) 0
(1,B) 1
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Discussion

If only  is monotone and selective,  might not 
have a memoryless optimal strategy
⊑ P1

Winning condition for :P1

((MP )  Büchi( ))  coBüchi( )∈ ℚ ∧ A ∨ B
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• Büchi( ) Büchi( ) requires finite memoryA ∧ B

We need memory!
Objectives/preference relations become 

more and more complex

A B
C

C
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(−1, − 1)

(−1, − 1)

(−1,1)(1, − 1)

• Büchi( ) Büchi( ) requires finite memoryA ∧ B

We need memory!

•  requires infinite memoryMP1 ≥ 0 ∧ MP2 ≥ 0

Objectives/preference relations become 
more and more complex
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-  gives the next moveα𝗇𝖾𝗑𝗍

How do we formalize finite memory?
Standardly

• The memory mechanism should not speak about information specific 
to particular games, hence:
-  should not speak of statesα𝗎𝗉𝖽

-  can speak of colors 
(notion of « chromatic strategy » by Kopczynski)
α𝗎𝗉𝖽

To have an abstract theorem… 
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•  with  and  ℳ = (M, m𝗂𝗇𝗂𝗍, α𝗎𝗉𝖽) m𝗂𝗇𝗂𝗍 ∈ M α𝗎𝗉𝖽 : M × C → M

Memory skeleton

A B
A

B

m1 m2

Not yet a strategy!

•Additional next-move function:   α𝗇𝖾𝗑𝗍 : M × Si → E

Strategy with memory ℳ

The above skeleton is sufficient for the winning condition 
Büchi( ) Büchi( )A ∧ B
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(s1, m1) ↦ (s1, s2)
(s1, m2) ↦ (s1, s1)
(s2, m1) ↦ (s2, s2)
(s2, m2) ↦ (s2, s1)

Product game :𝒜 ⋉ ℳ

ℳ

• One can however not apply the 
[GZ05] result to product games!
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Memory-dependent monotony and selectivity

Let  be a preference relation and  a memory skeleton.⊑ ℳ

It is said :

• -monotone wheneverℳ

• -selective wheneverℳ

We look at how  classifies prefixes and cyclesℳ

24
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Our characterization for -determinacyℳ

The two following assertions are equivalent : 
1. All finite games have optimal -strategies for both players 
2. Both  and  are -monotone and -selective

ℳ
⊑ ⊑−1 ℳ ℳ

Characterization - Two-player games 

The two following assertions are equivalent : 
1. All finite -games have (uniform) optimal -strategies 
2.  is -monotone and -selective

P1 ℳ
⊑ ℳ ℳ

Characterization - One-player games 

➡We recover [GZ05] with ℳ = ℳ𝗍𝗋𝗂𝗏
26



Applications

27



Applications

• If in all finite one-player game for player ,  has optimal -
strategies, then both players have optimal -strategies in 
all finite two-player games.

Pi Pi ℳi

ℳ1 × ℳ2

Transfer/Lifting theorem

27



Applications

Very powerful and extremely useful in practice!

• If in all finite one-player game for player ,  has optimal -
strategies, then both players have optimal -strategies in 
all finite two-player games.

Pi Pi ℳi

ℳ1 × ℳ2

Transfer/Lifting theorem

27



Applications

Very powerful and extremely useful in practice!

• If in all finite one-player game for player ,  has optimal -
strategies, then both players have optimal -strategies in 
all finite two-player games.

Pi Pi ℳi

ℳ1 × ℳ2

Transfer/Lifting theorem

• If both  and  are -monotone and -selective, then both 
players have optimal memoryless strategies in all -covered 
games.

⊑ ⊑−1 ℳ ℳ
ℳ

Subclasses of games
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⊑ ℳ1

ℳ1

 is -selective⊑ ℳ2m1 m2C∖{ , } C
ℳ2

m3

C∖{ }

 is -monotone and -selective⊑ ℳ1 ℳ2

 is -monotone and -selective⊑−1 ℳ1 ℳ𝗍𝗋𝗂𝗏

➡Memory  is sufficient for both players!!ℳ2
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Conclusion

• To arena-independent finite memory 
• Applies to generalized reachability or parity, lower- and upper-

bounded (multi-dimension) energy games 

A generalization of [GZ05]

• Does only capture arena-independent finite memory 
• Hard to generalize (remember counter-example) 
• Does not apply to multi-dim. MP, MP+parity, energy+MP (infinite 

memory) 

Limitations
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Conclusion

• Sufficient conditions giving half-memory management results 
• Compositionality w.r.t. objectives [LPR18]

Other approaches

• Understand the arena-dependent framework 
• Infinite arenas 
• Probabilistic setting 
•Other concepts (Nash equilibria) 

Further work
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