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Purpose of this work

»  Study stochastic real-time systems, and more generally stochastic continuous-
time (or space) processes

» ... with a model-checking approach

We want to design algorithms for verifying properties of (complex)

stochastic real-time systems!

= Designed algorithms should give guarantees...



Motivations

Needs for models with real-time and probabilities

Clock synchronization protocols

Root contention protocols

CSMA : random backoff retransmission time
Molecular reactions

Numerous models in the literature

Continuous-time Markov chains (CTMC)
Generalized semi-Markov processes (GSMP)
Stochastic timed automata (STA)

Stochastic differential equations
Continuous-space pure jJump Markov processes



A first GSMP example of a

two-machine network

{rebooty, crash, }

»  crash; event follows exp. distrib.

»  reboot; event follows bounded unif. distrib.
A

{crashy, crash, } { rebooty, reboot, }

{crashy, reboot, }

This generates an
infinite non

M, up

» Atstate [NV

e Eventsrebooty and crash, are sampled

e Arace condition applies to select the next state




Real-time stochastic
systems

Challenges

Intricate combination of dense time and probabillities
Uncountable state-space

Uncountable branching

Continuous probability distributions

Objectives

Qualitative model-checking: decide if a property holds almost-surely

Quantitative model-checking: compute the probability that a property holds,
or an approximation thereof




A focus on discrete-time
Markov chains (DTMC)

Decisiveness



Discrete-time Markov

chains

Discrete-time Markov chain (DTMC)

M = (S, sy, 6) with S denumerable, s, € Sand o : § — Dist(S)

1/2

Finite Markov chain Denumerable Markov chain



Quantitative model-

checking

»  Aim: compute the probability of property F @

[Note: very useful even for w-regular properties, where analysis amounts to
computing the probability of reaching good BSCCs]

»  Forstate s, let x, be such that: 1 fs= @
X = < 0 if s F HF@
Zt[lj’(s — 1) - x, otherwise

» The least fixpoint characterizes [P S(F@)

» Forfinite DTMCs, it amounts to solving a system of linear equations
e Fornot-too-big DTMCs, this can be computed

»  What can we do for infinite DTMCS?

lim P_ (FO) = P(FO)
n—oo
e Ad-hoc approximate solutions are developed

e EXxact solutions do not exist in general




DTMC: Approximate

quantitative model-checking

Approximation scheme

»  Aim: compute probability of F ©) |
Given e > 0, for every n, compute:

» @ =(seS|s FIFO)

p®® = PF,O)
p° = P(-OU_,@)
1 until pl®° + p° > 1 — ¢
© Z © p/® <PF@) <1-p°
() = A Vi
(s, P} <PF@) < 1-pi°

IA : VI

Does it converge”



Non-converging example
The unbalanced random walk

» @ =@ henceforalln € N, p)° =PF_,@)=0

1
fp > — then
y 1P 5

e PFO)=1-1n<1 henceforalln € N,p}l/es <1l-pg

e Thesequences (p)°°), and (1 — p'°) are not adjacent
e The approximation scheme does not converge




Decisiveness — 1

Decisiveness

A DTMC is decisive wrt. ©) ifforallstates, P(FO VF@) =1

» Examples of decisive Markov chains: finite Markov chains, probabilistic lossy
channel systems, probabilistic VASS, noisy Turing machines, ...

» Counterexample: unbalanced random walk
2 2
m Not decisive vv.r.t.@
since PFOV F@) < 1
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Decisiveness — 2

Approximation scheme

Given e > 0:

yes
n

f M is decisive w. r.t.@ then the approximation
scheme converges and IS correct.
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Beyond reachability

Repeated reachability

Approximation scheme

» Aim: compute probability of GF@ Given & > O for every i, compute:

) @ ={seS|s EIF @) {qzes = P(F§n®)

= PF_.@)

untilg?®> + g% > 1—¢

if M is decisive wrt. &) and @ g/es
then the approximation scheme 1

converges and Is correct. IA

<P(GFO®) <1-¢4]"°

VI
q)”° <P(GF®) <1-¢45°

IA : VI

Does it converge?
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Beyond reachability:
w-regular (Muller) properties

Attractor

Attris an attractor if forevery state s € §, P (FAttr) =1

A admits a finite attractor => A is decisive w.r.t. any goal

»  From Attr build the graph Graph(Attr) and compute its BSCCs

» Identify BSCCs that are good w.r.t. the Muller condition &

Cisgoodifthereis FF € & sit. e
-Forallg, C =* gimpliesq € F .

-Forallg € F,C —=* g

Then, P(Inf € F) = Z P(FC) IRRETE
C good BSCC

Use approximation scheme to compute P(FC)

>
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Real-time stochastic
systems

Decisiveness and
abstractions
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A first GSMP example of a

two-machine network

3 crash; event follows fixed exp. distrib. with param. /ll-

{rebooty, crash, } »  reboot; event follows fixed unif. distrib. over [0, U]

{crashy, crash, } { rebooty, reboot, }

{crashy, reboot, }

This generates an
infinite non

M, up

» Atstate [NV

e Eventsrebooty and crash, are sampled

e Arace condition applies to select the next state
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Stochastic transition
systems (STS)

Stochastic transition systems (STS)

I = (8§, 2, k) with (5, 2) a measurable space andk : S X 2 — [0,1] a Markov
kernel such that forall s € S, k(s, - ) € Dist(S)

» This defines a probability measure over infinite paths

[I:D'u(Ao, Al’ ...,An) — J

S0

J e J K(Sg, dsy)k(sy, ds,)...k(s,_p, ds,_x(s,_1,A,) u(dsy)
€Ay Y s1EA, S,_1€A,_1
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Examples:

Some examples

> =25

Countable Markov chains
Continuous-time Markov chains (CTMCQ)
Stochastic timed automata (STA)
Generalized semi-Markov processes (GSMP)
Stochastic Petri nets (SPN)

EtC...

~ Kk(s,{s'}) = p(s,s) )

18



Continuous-time Markov

chains (CTMC)

A simple gueueing system: [
e Arrival time parameter: A

(i.e. exponential distrib. with parameter A)

e Servingtime parameter: v
(i.e. exponential distrib. with parameter v)

L

e Apply arace condition to available events e € E(s) (with an exp. distrib. with
param. 4,)

» Semantics from state y = (s, t) where t is the absolute time:

» Kemelaty = (s,f)forB = {s'} X[t+d|,t + d,]:

d,

k(y,B) = Ze,ellj(s)ﬂe,'[ exp( —( Z /le,>)df

d, e'€E(s)

19



Generalized semi-Markov

Processes (GSMP)
{e, e} I - |
m Distributions on activated events:
; ; e Bounded-support distrib. for ¢,

€
: e Exponential distrib. for e,

{34}

€
Q.-

» Semantics fromstate y = (s,v) withv(e) = L ife & E(s) andv(e) € R otherwise (the
remaining time before expiring):

e Pickthe event ey with the shortest expiring delay

e Gotostates'st s -3 s’and set y' = (s',U")
. Shiftall remaining delays: /() = v(e) — u(ey) ife € (E(s") N E(s))\{ey} and
sample newly activated events using their nominal distributions

» Kernelaty = (s,v)forB = {s'} X B"

k(y,B) = o(s, eO)(S’)J ( H ge(te)> dtel’“dte

p
(tl,...,tp)EB/ ecE(s")
20



Stochastic timed automata

(STA)

» Stochastic timed automata = timed automata with random delays
x<Il;x:=0

1 x <1 Distributions on possible delays:
x <
‘Q e Bounded-supportdistrib. in 8
A > 1
{ S @ e [EXxponential distrib. in sy

» Semantics from state y = (s, v):

e Pickadelay d according to distribution g in s at v
e (Choose at random an available edge

» Kernelaty = (s, V):

Kr.B) = Y J 15((5", [Y 10+ 7)) - pyace) du(@)

e=(s,g,Y,s") "7
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Decisiveness of STSs

Decisiveness of STSs

» New & needs to be defined An STS T is decisive writ @ it for all

» =S5 |PFO)=0)

distribution u, P (FO v F@) = 1

» How to perform approximate quantitative analysis of decisive STSs”?
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Analysis of decisive STSs

Approximation scheme for reach.

Givene > 0O:
If I is decisive W.rt. @ then the

yesS approximation scheme converges and IS
& correct:

(p%/es)n and (1 — p,QO),,, both converge to

PFO)

» Applicability: the approximation scheme is effective when
& can be computed

« One can evaluate the valuesp}l/eS and p,r;o, .e. one can compute (or

approximate) probabilities of cylinders of the form Cyl(SS...S©) and

Y-~O .- O@
Other approximation schemes also apply
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Is that all?

» Decisiveness is hard to check in general

» One needs:
« To design methods to avoid proving directly decisiveness
« And/or to identify subclasses of systems which are decisive

» Standard approach for real-time systems:
« Use of abstractions?

24



Abstractions

Fortwo STSs ‘71 — (Sl’ 21, Kl) and ‘72 — (Sz, 22, Kz), and
a: (8,2 = ($,,2,) ameasurable function:

O

>

Ty
» I ,isan a-abstraction of I | whenever IS equivalent to

» I ,isasound a-abstraction of | whenever foreach B € 2,
g, = P72(FB) = 1implies ¢, = P7(Fa~'(B)) = 1
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Abstractions, decisiveness
and attractors

If I, is a sound a-abstraction of ¢, then:
e T, decisive wrt.©) implies 7 | decisive wrt. a~(©))

e Attr attractor for 7, implies a~ ' (Attr) attractor for |

26



Example of application of
the approach

»  Setting:
e J general STS
e I ,countable Markov chain with a finite attractor

e I ,sound a-abstraction of I

» How to model-check Muller properties?

« Almost-sure model checking of a Muller property in 1 reduces to
almost-sure model checking of a reachability property in I 5

Computation of the probability of Muller properties in J 1 reduces to
computation of a reachability probability in I

Py (Inf € F) = > Py (Fa~™'(C))
c good BSCC In 7,




Specific results for real-time
stochastic systems

The state-space includes a time component: § = 5 X |R+

Time elapses almost-surely: k((s, £), {(s’,t) € S | ' > ¢t}) =1

If 7 is almost-surely non-Zeno, then A, = {(s,£) € S | t > A}isan
attractor.

9 is decisive w.rt. time-bounded sets.
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Laboratoire école

( _—
Héthodes universite normale———

supérieure

Formelles PARIS-SACLAY paris_sac|ay

Applications
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Application to

Stochastic Timed Automata

» Natural abstraction:
« Markov chain built on region automaton

»  STA with an attractor, hence decisive
« Single-clock STA:
Attr = {(Z,0)} U{(@, ) | r=W, + o)}

« Reactive STA, 1.e. complete w.r.t. delays
Attr = {(Z,r) |Vx, x=0orx> M in r}

» Model-checking STA
« We recover all known decidability/approximability results...
« ...and extend them, e.g. for Muller properties
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STA — A counterexample

x>2Ay<1
x:=0

x=0
0<y< 11—l

x>1Ay<1
x:=0

One can show that this STA Is not decisive, and

standard region automaton does not correctly
evaluate the probability of reaching ©)

V4
Y2

Y1
Yo

Proba of edges:
l -y, 1
2 — YV 2 — Y
1 —v 1
2—U 2—v

A

Can becloseto 0
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4

4

Application to

Generalized Semi-Markov
Processes

We consider GSMP with no fixed-delay events

Natural abstraction:
« Markov chain built on a refined region abstraction

An attractor based on these refined regions exist
- The abstraction is sound!
« Hence GSMP with no fixed-delay events are decisivel!

Model-checking GSMP:
« Decidability of qualitative analysis for rich properties
« Approximate analysis for rich properties as well

Warning: with fixed-delay events, this is no more the case!
This was pinpointed in [BKKR11]
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GSMP — Counterexample

) |

t oL Init P i t
C-waiting (p) C-waiting
{p,t} {p,t})
p
C ¢
2 2 1 1
Buffering Consuming Consuming t Buffering
Consuming Transporting Transporting Consuming
{p,cl {p,t,c} {p,t,c} {p,c}

Fig.2. A GSMP of a producer-consumer system. The events p, ¢, and ¢ model that a packet
production, transport, and consumption is finished, respectively. Below each state label, there is
the set of scheduled events. The fixed-delay events p and ¢ have [, = u, = [. = u. = 1 and the
uniformly distributed variable-delay event t has [, = 0 and u, = 1.

[BKKR11] T. Brazdil, J. Krcal, J. Kretinsky, V. Rehak. Fixed-Delay Events in Generalized Semi-Markov Processes Revisited (CONCUR’11) 33



Stochastic Petri nets

» Petrinets in which stochastic delays are attached to transitions [ACB84]

» Restricted setting to fit our framework:
- Bounded Petri net

« Markov regenerative: regeneration points are encountered infinitely often
almost-surely [HPRV12 PHV16]

» Regeneration points form a finite attractor
» Abstraction: standard state-class graph
» Regenerative Petri nets are decisive!

The remaining ‘
durations of enabled Y}
transitions are all
memoryless

» Approximate analysis can be done, provided numerical computations are amenable

» We recover the classes that were analyzed (though the authors had a focus on
efficient computations)
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Laboratoire @ école——
Méthodes universite IS
Formelles PARIS-SACLAY S

paris—saclay

Conclusion

Thoughts on SMC
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What we did

» A generic approach to approximate analysis of stochastic processes with possibly
continuous state-space, based on finite-horizon computations

« With hypotheses (existence of an attractor, decisiveness, ...) and guarantees!

» It requires numerical computability properties to be effective
(that we did not consider here)

» It applies to many classes of real-time stochastic systems
« (Classes of STA
« (Classes of GSMPs
- Regenerative Petri nets

» The decisiveness property is in the core of the approach
« Tools like attractors and abstractions are very helpful to ensure decisiveness
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Going further: statistical

model-checking

Monte-Carlo simulation:

- Sample a large number of realizations of a random variable X, and compute the mean

. Thisis an estimator of E(X), with guarantees given as confidence intervals

» |Nnour case:

« A realization = an (infinite) execution

- X evaluates a property ¢) over executions

» Everything works fine with time-bounded properties [YSO6]
e [Finite executions are sufficient
» Time-unbounded properties require some attention [YCZ11]
e Compute @ prior to simulations
e The executions will almost-surely be finite (and end in©or i/n_“@)
e Thisis applicable to finite Markov chains only -

The only v
required assumption \
1s a decisiveness '
property!
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